首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A full-length cDNA encoding ribosome-inactivating/antiviral protein (RIP/AVP)from the leaves of Bougainvillea x buttiana was isolated.The cDNA consisted of 1364 nucleotides with an open reading frame (ORF)of 960 nucleotides encoding a 35.49 kDa protein of 319 amino acids.The deduced amino acid sequence has a putative active domain conserved in RIPs/AVPs and shows a varying phylogenetic relationship to the RIPs from other plant species.The deduced protein has been designated BBAP1 (Bougainvillea x buttiana antiviral protein1).The ORF was cloned into an expression vector and expressed in E.coli as a fusion protein of approximately 78 kDa.The cleaved and purified recombinant BBAP1 exhibited ribosome-inhibiting rRNA N-glycosidase activity,and imparted a high level of resistance against the tobacco mosaic virus (TMV).  相似文献   

2.
Liu Z  Li X  Chi Z  Wang L  Li J  Wang X 《Antonie van Leeuwenhoek》2008,94(2):245-255
The extracellular lipase structural gene was isolated from cDNA of Aureobasidium pullulans HN2-3 by using SMARTTM RACE cDNA amplification kit. The gene had an open reading frame of 1245 bp long encoding a lipase. The coding region of the gene was interrupted by only one intron (55 bp). It encodes 414 amino acid residues of a protein with a putative signal peptide of 26 amino acids. The protein sequence deduced from the extracellular lipase structural gene contained the lipase consensus sequence (G-X-S-X-G) and three conserved putative N-glycosylation sites. According to the phylogenetic tree of the lipases, the lipase from A. pullulans was closely related to that from Aspergillus fumigatus (XP_750543) and Neosartorya fischeri (XP_001257768) and the identities were 50% and 52%, respectively. The mature peptide encoding cDNA was subcloned into pET-24a (+) expression vector. The recombinant plasmid was expressed in Escherichia coli BL21(DE3). The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 47 kDa was found. Enzyme activity assay verified the recombinant protein as a lipase. A maximum activity of 0.96 U/mg was obtained from cellular extract of E. coli BL21(DE3) harboring pET-24a(+)LIP1. Optimal pH and temperature of the crude recombinant lipase were 8.0 and 35 °C, respectively and the crude recombinant lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

3.
For the heterologous expression of the msp2 gene from the edible mushroom Marasmius scorodonius in Escherichia coli the cDNA encoding the extracellular Msp2 peroxidase was cloned into the pBAD III expression plasmid. Expression of the protein with or without signal peptide was investigated in E. coli strains TOP10 and LMG194. Different PCR products were amplified for expression of the native target protein or a protein with a signal peptide. Omitting the native stop codon and adding six His-residues resulted in a fusion protein amenable to immune detection and purification by immobilised metal affinity chromatography. In E. coli the recombinant protein was produced in high yield as insoluble inclusion bodies. The influence of different parameters on MsP2 refolding was investigated. Active enzyme was obtained by glutathione-mediated oxidation in a medium containing urea, Ca2+, and hemin.  相似文献   

4.
Lin X  Minamisawa N  Takechi K  Zhang W  Sato H  Takio S  Tsukaya H  Takano H 《Planta》2008,228(4):601-608
ANGUSTIFOLIA (AN), a plant homolog of C-terminal binding protein, controls the polar elongation of leaf cells and the trichome-branching pattern in Arabidopsis thaliana. In the present study, degenerate PCR was used to isolate an ortholog of AN, referred to as LgAN, from larch (Larix gmelinii). The LgAN cDNA is predicted to encode a protein of 646 amino acids that shows striking sequence similarity to AN proteins from other plants. The predicted amino acid sequence has a conserved NAD-dependent 2-hydroxy acid dehydrogenase (D2-HDH) motif and a plant AN-specific LxCxE/D motif at its N-terminus, as well as a plant-specific long C-terminal region. The LgAN gene is a single-copy gene that is expressed in all larch tissues. Expression of the LgAN cDNA rescued the leaf width and trichome-branching pattern defects in the angustifolia-1 (an-1) mutant of Arabidopsis, showing that the LgAN gene has effects complementary to those of AN. These results suggest that the LgAN gene has the same function as the AN gene.  相似文献   

5.
An efficient strategy for the expression and secretion of extracellular polyhydroxybutyrate depolymerase (PhaZ1) of Paucimonas lemoignei in Escherichia coli was developed by employing the signal peptide of PhaZ1 and a truncated ice nucleation protein anchoring motif (INPNC). Directly synthesized mature form of Phaz1 was present in the cytoplasm of host cells as inclusion bodies, while a construct containing Phaz1 and its own N-terminal signal peptide (PrePhaz1) enabled the secretion of active Phaz1 into the extracellular medium. However, the PrePhaz1 construct was harmful to the host cell and resulted in atypical growth and instability of the plasmid during the cultivation. In contrast, INPNC-Phaz1 and INPNC-PrePhaz1 fusion constructs did not affect growth of host cells. INPNC-Phaz1 was successfully displayed on the cell surface with its fusion form, but did not retain Phaz1 activity. In the case of INPNC-PrePhaz1, the initially synthesized fusion form was separated by precise cleavage of the signal peptide, and active Phaz1 was consequently released into the culture medium. The amount of Phaz1 derived from E. coli (INPNC-PrePhaz1) was almost twice as great as that directly expressed from E. coli (PrePhaz1), and was predominantly (approximately 85%) located in the periplasm when cultivated at 22°C but was efficiently secreted into the extracellular medium when cultivated at 37°C.  相似文献   

6.
The constitutive expression of human cathelicidin LL-37 antimicrobial peptide was achieved using the methylotrophic yeast, Pichia pastoris. An LL-37 cDNA clone was amplified by PCR using human fetal cDNA library as template. The 111 bp fragment encoding mature LL-37 gene was subcloned into pGAPZ-E, an episomal form of the pGAPZB vector incorporating PARS1. It was then transformed into the P. pastoris X-33 strain for intracellular expression. A small peptide with a molecular mass of about 5 kDa was detected by 17% peptide-PAGE analysis. The recombinant LL-37 peptide was purified from the gel and its amino acid sequence was determined by LC-ESI-MS/MS analysis. The initiating amino acid, methionine, was still attached to the N-terminal region of recombinant LL-37. LL-37 crude extract from P. pastoris showed an antimicrobial activity against Micrococcus luteus as the test strain. The successful expression of human LL-37 indicates that the system may be applicable to the expression of other human defensins without resorting to fusion protein constructions.  相似文献   

7.
8.
9.
10.
11.
Two cDNA fragments (lrF1 and lrF2) representing a fibrinolytic enzyme gene of F-III-2 (GenBank AB045719), without and with signal peptide coding sequence, were cloned from earthworm Lumbricus rubellus. The two fragments were inserted into bacterial expression vector pET28a (+), respectively. Subsequent expression showed that both lrF1 and lrF2 proteins were produced as an inclusion body form in E. coli BL21 (DE3) pLysE. After protein refolding and purification, the fusion lrF1 and its derivative without poly histidine tags at the N-terminus showed fibrinolytic activity on fibrin plates with relative activity of 134.3 U/mg protein and 139.7 U/mg protein, respectively, whereas the fusion lrF2 and its derivative without the tags at the N-terminus, had no fibrinolytic activity. The results indicated that the E. coli expression system could not recognize the endogenous signal peptide of F-III-2, and the effect of the histidine tags at the N-terminus on the fibrinolytic activity of the expressed protein was insignificant.  相似文献   

12.
The gene for phospholipase D (PLD) of Streptomyces sp. YU100 was cloned from λ phage library and hetero-logously expressed in Escherichia coli. Using an amplified gene fragment based on the consensus sequences of streptomycetes PLDs, λ phage library of Streptomyces sp. YU100 chromosomal DNA was screened. The sequencing result of BamHI-digested 3.8 kb fragment in a positive phage clone revealed the presence of an open reading frame of a full sequence of PLD gene encoding a 540-amino acid protein including 33-amino acid signal peptide. The deduced amino acid sequence showed a high homology with other Streptomyces PLDs, having the highly conserved ‘HKD’ motifs. The PLD gene excluding signal peptide sequence was amplified and subcloned into a pET-32b(+) expression vector in E. coli BL21(DE3). The recombinant PLD was purified by nickel affinity chromatography and compared the enzyme activity with wild-type PLD. The results imply that the recombinant PLD produced by E. coli had the nearly same enzyme activity as PLD from Streptomyces sp. YU100.  相似文献   

13.
The endochitinase DNA and cDNA from Trichoderma sp. were cloned, sequenced and expressed. The cloned DNA and cDNA sequences were 1,476 and 1,275 bp in length, respectively. There were three introns in DNA sequence in comparison with the cDNA sequence. The endochitinase protein contained three regions: the signal peptide, the prepro-region and the mature protein region. The gene fragment encoding the mature endochitinase was ligated into the expression vector pET-28a+, yielding pET-1. The plasmid pET-1 was transformed into the Escherichia coli BL21 (DE3). The clone bearing pET-1 was picked and cultured at 30°C for the expression of endochitinase. SDS-PAGE analysis showed that the endochitinase was expressed in the periplasmic space and the purified protein showed a single band. The activity of 70.2 U/mg was obtained from the cellular extract of the recombinant strain. The activity of endochitinase was 2.5-fold higher at 24 h than at 16 h in the periplasmic space. The optimal pH and temperature of the recombinant endochitinase were determined to be 7.0 and 35°C, respectively. It was relatively stable within the pH range of 5–8. Significant activity stimulation by 1 mM Mg2+ and 5 mM Fe2+ and inhibition by 5 mM Co2+ and 5 mM Hg2+ were observed. The kinetic constants Km, Vmax and Kcat for the hydrolysis of the colloidal chitin were 1.5 mM, 1.37 μmol min−1 and 6.23 min−1, respectively.  相似文献   

14.
A novel antifreeze protein cDNA was cloned by RT-PCR from the larva of the yellow mealworm Tenebrio molitor. The coding fragment of 339 bp encodes a protein of 112 amino acid residues and was fused to the expression vectors pET32a and pTWIN1. The resulted expression plasmids were transformed into Escherischia coli strains BL21 (DE3), ER2566, and Origami B (DE3), respectively. Several strategies were used for expression of the highly disulfide-bonded β-helix-contained protein with the activity of antifreeze in different expression systems. A protocol for production of refolded and active T. molitor antifreeze protein in bacteria was obtained.  相似文献   

15.
16.
The Perilla (Perilla frutescens L. cv. Okdong) oleosin gene, PfOle19, produces a 19-kDa protein that is highly expressed only in seeds. The activity of the −2,015 bp 5′-upstream promoter region of this gene was investigated in transgenic Arabidopsis plants using the fusion reporter constructs of enhanced green fluorescent protein (EGFP) and β-glucuronidase (GUS). The PfOle19 promoter directs Egfp expression in developing siliques, but not in leaves, stems or roots. In the transgenic Arabidopsis, EGFP fluorescence and histochemical GUS staining were restricted to early seedlings, indehiscent siliques and mature seeds. Progressive 5′-deletions up to the −963 bp position of the PfOle19 promoter increases the spatial control of the gene expression in seeds, but reduces its quantitative levels of expression. Moreover, the activity of the PfOle19 promoter in mature seeds is 4- and 5-fold greater than that of the cauliflower mosaic virus 35S promoter in terms of both EGFP intensity and fluorometric GUS activity, respectively.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号