首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gross details of the reproductive cycle and the cytology of oogenesis were studied in 155 egg clutches produced by 69 captive individuals of the triploid parthenogenetic lizard Cnemidophorus uniparens. The mean clutch cycle lasted 23 days. The mean number of ova per clutch was 3.3, and the mean number of oocytes per right and left ovaries was 1.65 and 1.70, respectively. Comparison of the size of the oocytes at ovulation (9–10 mm) with the estimated mean duration of vitellogenesis (8.8 days) gave an average of approximately 1 mm yolk deposition per day. The mean time for the retention of eggs in the oviducts was 9.3 days. The germinal disc of the oocyte consists of a series of layers formed by the arrangement of various cytoplasmic and yolk particles in the polar region. In a mature oocyte the germinal vesicle is located immediately below the vitelline membrane and lies at the center of the germinal disc. The germinal vesicle is characterized by a dense disc-like cluster of diplotene chromosomes. Diplonema extends until near ovulation when the oocytes have attained a size of about 9 mm. Diakinesis and metaphase I occur rapidly and immediately prior to ovulation. Counts of approximately as many bivalents as there are somatic chromosomes were obtained from oocytes at diakinesis and metaphase I. The second division occurs almost immediately before or at the precise moment of ovulation. The chromosomes of the first polar body consist of dyads, of which there are as many as the triploid number of 69. A metaphase II plate obtained in polar view also revealed dyad chromosomes, of which there were approximately as many as the triploid somatic number. The second telophase is normal as evidenced by formation of the second polar body. Chromosomes from the opposing telophase plates show a monad structure. The presence of as many bivalents in the first division as the triploid somatic number of 69 indicates that the 3N condition of C. uniparens was doubled prior to meiosis. This is further supported by the occurrence of two maturation divisions each giving rise to a polar body, by the dyad structure of the chromosomes in the first polar body and the second metaphase, and by the presence of monochromosomes at telophase II. Thus, parthenogenesis in these lizards is of the meiotic type. The somatic number of chromosomes is doubled early in oogenesis presumably by a premeiotic endoduplication, and the 3N level is restored by two subsequent maturation divisions.  相似文献   

2.
Mouse oocytes at different stages of maturation were fused together and the ensuing cell cycle events were analyzed with the objective of identifying checkpoints in meiosis. Fusion of maturing oocytes just undergoing germinal vesicle breakdown (GVBD) induces PCC (premature chromosome condensation) but no spindle formation in immature (GV) partner oocytes. On the other hand, fusion of metaphase I (MI) oocytes containing spindles to GV oocytes induces both PCC and spindle formation in the immature partner. Thus, while molecules required for condensation are present throughout metaphase, those involved in spindle formation are absent in early M-phase. Oocytes cultured for 6 h—early metaphase I (i.e., 2 h before the onset of anaphase I)—and then fused to anaphase-telophase I (A-TI) fusion partners block meiotic progression in the more advanced oocytes and induce chromatin dispersal on the spindle. By contrast, oocytes cultured for 8 h (late MI) before fusion to A-TI partners are driven into anaphase by signals from the more advanced oocytes and thereafter advance in synchrony to telophase I. When early (10 h) or late (12 h) metaphase II oocytes were fused to A-TI partners the signals generated from early MII oocytes block the anaphase to telophase I transition and induce a dispersal of A-TI chromosomes along the spindle. On the other hand, late MII oocytes respond to A-TI signals by exiting from the MII block and undergoing the A-TII transition. Moreover, the oocytes in late MI are not arrested in this stage and progress without any delay through A-TI to MII when fused to metaphase II partners. The signals from the less-developed partner force the MII oocyte through A-TII to MIII. In total, these studies demonstrate that the metaphase period is divided into at least three distinct phases and that a checkpoint in late metaphase controls the progress of meiosis in mammalian oocytes.  相似文献   

3.
The meiotic behaviour and structure of the sex chromosomes of Microtus oeconomus (2n=30) in Giemsa stained preparations are described. The X-Y pair appears as a sex vesicle at late zygotene. At late pachytene an unfolded sex vesicle is visible. A condensed sex vesicle appears during pre-diffuse diplotene and starts to unfold again during post-diffuse diplotene. At diakinesis and metaphase I the X and Y chromosomes can be recognized in an end-to-end association. During anaphase I, interkinesis and metaphase II the sex chromosomes are heteropycnotic and can therefore easily be recognized during the final stages of meiosis. During spermiogenesis the X and Y chromosomes can be identified in Giemsa stained preparations until the stage of spermatid elongation.  相似文献   

4.
Traut W  Endl E  Scholzen T  Gerdes J  Winking H 《Chromosoma》2002,111(3):156-164
We used immunolocalization in tissue sections and cytogenetic preparations of female and male gonads to study the distribution of the proliferation marker pKi-67 during meiotic cell cycles of the house mouse, Mus musculus. During male meiosis, pKi-67 was continuously present in nuclei of all stages from the spermatogonium through spermatocytes I and II up to the earliest spermatid stage (early round spermatids) when it appeared to fade out. It was not detected in later spermatid stages or sperm. During female meiosis, pKi-67 was present in prophase I oocytes of fetal ovaries. It was absent in oocytes from newborn mice and most oocytes of primordial follicles from adults. The Ki-67 protein reappeared in oocytes of growing follicles and was continuously present up to metaphase II. Thus, pKi-67 was present in all stages of cell growth and cell division while it was absent from resting oocytes and during the main stages of spermiocytogenesis. Progression through the meiotic cell cycle was associated with extensive intranuclear relocation of pKi-67. In the zygotene and pachytene stages, most of the pKi-67 colocalized with centromeric (centric and pericentric) heterochromatin and adjacent nucleoli; the heterochromatic XY body in male pachytene, however, was free of pKi-67. At early diplotene, pKi-67 was mainly associated with nucleoli. At late diplotene, diakinesis, metaphase I and metaphase II of meiosis, pKi-67 preferentially bound to the perichromosomal layer and was almost absent from the heterochromatic centromeric regions of the chromosomes. After the second division of male meiosis, the protein reappeared at the centromeric heterochromatin and an adjacent region in the earliest spermatid stage and then faded out. The general patterns of pKi-67 distribution were comparable to those in mitotic cell cycles. With respect to the timing, it is interesting to note that relocation from the nucleolus to the perichromosomal layer takes place at the G2/M-phase transition in the mitotic cell cycle but at late diplotene of prophase I in meiosis, suggesting physiological similarity of these stages.  相似文献   

5.
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.  相似文献   

6.
The pesticide trichlorfon (TCF) has been implicated in human trisomy 21, and in errors in chromosome segregation at male meiosis II in the mouse. We previously provided evidence that TCF interferes with spindle integrity and cell-cycle control during murine oogenesis. To assess the aneugenic activity of TCF in oogenesis, we presently analysed maturation, spindle assembly, and chromosome constitution in mouse oocytes maturing in vitro in the presence of 50 or 100 microg/ml TCF for 16 h or in pulse-chase experiments. TCF stimulated maturation to meiosis II at 50 microg/ml, but arrested meiosis in some oocytes at 100 microg/ml. TCF at 100 microg/ml was aneugenic causing non-disjunction of homologous chromosomes at meiosis I, a significant increase of the hyperploidy rate at metaphase II, and a significant rise in the numbers of oocytes that contained a 'diploid' set of metaphase II chromosomes (dyads). TCF elevated the rate of precocious chromatid segregation (predivision) at 50 and 100 microg/ml. Pulse-chase experiments with 100 microg/ml TCF present during the first 7 h or the last 9 h of maturation in vitro did not affect meiotic progression and induced intermediate levels of hyperploidy at metaphase II. Exposure to > or =50 microg/ml TCF throughout maturation in vitro induced severe spindle aberrations at metaphase II, and over one-third of the oocytes failed to align all chromosomes at the spindle equator (congression failure). These observations suggest that exposure to high concentrations of TCF induces non-disjunction at meiosis I of oogenesis, while lower doses may preferentially cause errors in chromosome segregation at meiosis II due to disturbances in spindle function, and chromosome congression as well as precocious separation of chromatids prior to anaphase II. The data support evidence from other studies that TCF has to be regarded as a germ cell aneugen.  相似文献   

7.
Preovulatory mouse oocytes were cultured in vitro up to each subsequent stages of maturation: germinal vesicle (GV), germinal vesicle breakdown (GVBD), groups of not yet individualized bivalents, circular bivalents, late prometaphase I, metaphase I, anaphase I and telophase I. The stages were identified in living oocytes by fluorescence microscopy using Hoechst 33342 as a specific vital dye. Oocytes from each stage of development developed in vitro and ovulated metaphase II oocytes were subsequently cultured in the presence of puromycin or 6-dimethylaminopurine (6-DMAP), an inhibitor of protein phosphorylation. The effects on chromatin of these drugs were studied during and at the end of culture by fluorescence and electron microscopy. We found that puromycin and 6-DMAP stop meiosis when applied at all stages of oocyte maturation, except for metaphase II. Oocytes at this stage are activated by puromycin. Reaction of the oocytes to the two drugs is different at GV and at metaphase II. All of the other stages react to the drugs by chromatin compaction, which can be followed by chromatin decondensation to form a nucleus. Our results suggest that late prophase chromatin condensation, bivalent individualization and retention of their individuality, as well as individualization of monovalents from telophase and retention of their individuality at metaphase II, are dependent on protein phosphorylation. The events occurring between metaphase I and telophase I are independent of protein synthesis and phosphorylation. The events occurring between metaphase II and formation of the nucleus are independent of protein synthesis.by U. Scheer  相似文献   

8.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

9.
The Drosophila MEI-S332 protein has been shown to be required for the maintenance of sister-chromatid cohesion in male and female meiosis. The protein localizes to the centromeres during male meiosis when the sister chromatids are attached, and it is no longer detectable after they separate. Drosophila melanogaster male meiosis is atypical in several respects, making it important to define MEI-S332 behavior during female meiosis, which better typifies meiosis in eukaryotes. We find that MEI-S332 localizes to the centromeres of prometaphase I chromosomes in oocytes, remaining there until it is delocalized at anaphase II. By using oocytes we were able to obtain sufficient material to investigate the fate of MEI-S332 after the metaphase II–anaphase II transition. The levels of MEI-S332 protein are unchanged after the completion of meiosis, even when translation is blocked, suggesting that the protein dissociates from the centromeres but is not degraded at the onset of anaphase II. Unexpectedly, MEI-S332 is present during embryogenesis, localizes onto the centromeres of mitotic chromosomes, and is delocalized from anaphase chromosomes. Thus, MEI-S332 associates with the centromeres of both meiotic and mitotic chromosomes and dissociates from them at anaphase.  相似文献   

10.
The present study was designed to investigate the localization of mitotic arrest deficient 1 (MAD1) in mouse oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at various stages during the first meiosis were fixed and immunostained for MAD1, kinetochores, microtubules, and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes were treated with nocodazole or Taxol before examination. The anti-MAD1 antibody was injected into the oocytes at the germinal vesicle (GV) stage for examination of chromosome alignment and spindle formation. It was found that MAD1 was present in the oocytes from the GV to prometaphase I stages around the nuclei. When the oocytes reached the metaphase I (M-I) to metaphase II (M-II) stages, MAD1 was mainly localized at the spindle poles. However, MAD1 relocated to the vicinity of the chromosomes when spindles were disassembled by nocodazole or cooling, and the relocated MAD1 moved back to the spindle poles during spindle recovery. Taxol treatment did not affect the MAD1 localization. Although anti-MAD1 antibody injection did not affect nuclear maturation, significantly higher proportions of injected oocytes had misaligned chromosomes when the oocytes reached the M-I to M-II stages. The results of the present study indicate that MAD1 is present in mouse oocytes at all stages during the first meiosis and that it participates in spindle checkpoint during meiosis. However, MAD1 could not check misaligned chromosomes during spindle recovery after the spindles were destroyed by drug or cooling, which caused some chromosomes to scatter in the oocytes.  相似文献   

11.
Oocytes from LTXBO mice exhibit a delayed entry into anaphase I and frequently enter interphase after the first meiotic division. This unique oocyte model was used to test the hypothesis that protein kinase C (PKC) may regulate the meiosis I-to-meiosis II transition. PKC activity was detected in LTXBO oocytes at prophase I and increased with meiotic maturation, with the highest (P < 0.05) activity observed at late metaphase I (MI). Treatment of late MI-stage oocytes with the PKC inhibitor, bisindolylmaleimide I (BIM), transiently reduced (P < 0.05) M-phase-promoting factor (MPF) activity and promoted (P < 0.05) progression to metaphase II (MII), while mitogen-activated protein kinase (MAPK) activity remained elevated during the MI-to-MII transition. Confocal microscopy analysis of LTXBO oocytes during this transition showed PKC-delta associated with the meiotic spindle and then with the chromosomes at MII. Inhibition of PKC activity also prevented untimely entry into interphase, but only when PKC activity was reduced in oocytes before the progression to MII and thus indicates that the transition into interphase is directly associated with the delayed triggering of anaphase I. Moreover, the defect(s) that initiate activation occur upstream of MAPK, as suppression of PKC activity failed to prevent activation by Mos(tm1Ev)/ Mos(tm1Ev) LTXBO oocytes expressing no detectable MAPK activity. In summary, PKC participates in the regulatory mechanisms that delay entry into anaphase I in LTXBO oocytes, and the disruption promotes untimely entry into interphase. Thus, loss of regulatory control over PKC activity during oocyte maturation disrupts the critical MI-to-MII transition, leading to a precocious exit from meiosis.  相似文献   

12.
Oocytes were collected from preantral follicles (200-300 mu in diameter) from 30-day-old immature rats 7 days after hypophysectomy. The ova were cultured in vitro for 17 hrs in a chemically defined medium and scored cytologically for meiotic maturation. Of 534 oocytes that were cultured 89% resumed meiosis; however, 98% of these oocytes arrested in either metaphase or anaphase I. In contrast, 82% of the oocytes isolated from preovulatory follicles (approximately 600 mu in diameter) of adult proestrus rats progressed to metaphase II. These results are discussed in terms of functional FSH and LH receptors on the granulosa cells.  相似文献   

13.
In the microsporocytes of a haploid of Trilicum monococcum (x = 7), foldback and other nonhomologous pairing was observed at pachytene. At the diplotene equivalent stage of meiosis, nonhomologous chromosomes were connected by their telomeres in associations involving two to seven chromosomes. Telomeric connections were Feulgen-positive for DNA and were disjoined by metaphase I. These connections may have resulted from earlier base-pairing of repeated sequences of guanine-rich telomere overhangs of nonhomologous chromosomes. Recent molecular studies of several widely divergent organisms have shown that all telomeres of nonhomologous chromosomes in a genome are identical, and telomere structure is conserved among widely divergent eukaryotes. Chromosome distribution at anaphase I fitted theoretical expectations of random movement of each of the seven chromosomes to one or the other of the two poles as did pollen fertility (stainability) resulting from such distribution. A single bivalent in 3.78% of the metaphase I cells provided evidence for a duplication in the genome of Triticum monococcum.  相似文献   

14.
Individual bivalents or chromosomes have been identified in Drosophila melanogaster spermatocytes at metaphase I, anaphase I, metaphase II and anaphase II in electron micrographs of serial sections. Identification was based on a combination of chromosome volume analysis, bivalent topology, and kinetochore position. — Kinetochore microtubule numbers have been obtained for the identified chromosomes at all four meiotic stages. Average numbers in D. melanogaster are relatively low compared to reported numbers of other higher eukaryotes. There are no differences in kinetochore microtubule numbers within a stage despite a large (approximately tenfold) difference in chromosome volume between the largest and the smallest chromosome. A comparison between the two meiotic metaphases (metaphase I and metaphase II) reveals that metaphase I kinetochores possess twice as many microtubules as metaphase II kinetochores. — Other microtubules in addition to those that end on or penetrate the kinetochore are found in the vicinity of the kinetochore. These microtubules penetrate the chromosome rather than the kinetochore proper and are more numerous at metaphase I than at the other division stages.  相似文献   

15.
The present study was designed to investigate subcellular localization of MAD2 in rat oocytes during meiotic maturation and its relationship with kinetochores, chromosomes, and microtubules. Oocytes at germinal vesicle (GV), prometaphase I (ProM-I), metaphase I (M-I), anaphase I (A-I), telophase I (T-I), and metaphase II (M-II) were fixed and immunostained for MAD2, kinetochores, microtubules and chromosomes. The stained oocytes were examined by confocal microscopy. Some oocytes from GV to M-II stages were treated by a microtubule disassembly drug, nocodazole, or treated by a microtubule stabilizer, Taxol, before examination. Anti-MAD2 antibody was also injected into the oocytes at GV stage and the injected oocytes were cultured for 6 h for examination of chromosome alignment and spindle formation. It was found that MAD2 was at the kinetochores in the oocytes at GV and ProM-I stages. Once the oocytes reached M-I stage in which an intact spindle was formed and all chromosomes were aligned at the equator of the spindle, MAD2 disappeared. However, when oocytes from GV to M-II stages were treated by nocodazole, spindles were destroyed and MAD2 was observed in all treated oocytes. When nocodazole-treated oocytes at M-I and M-II stages were washed and cultured for spindle recovery, it was found that, once the relationship between microtubules and chromosomes was established, MAD2 disappeared in the oocytes even though some chromosomes were not aligned at the equator of the spindle. On the other hand, when oocytes were treated with Taxol, MAD2 localization was not changed and was the same as that in the control. However, immunoblotting of MAD2 indicated that MAD2 was present in the oocytes at all stages; nocodazole and Taxol treatment did not influence the quantity of MAD2 in the cytoplasm. Significantly higher proportions of anti-MAD2 antibody-injected oocytes proceeded to premature A-I stage and more oocytes had misaligned chromosomes in the spindles. The present study indicates that MAD2 is a spindle checkpoint protein in rat oocytes during meiosis. When the spindle was destroyed by nocodazole, MAD2 was reactivated in the oocytes to overlook the attachment between chromosomes and microtubules. However, in this case, MAD2 could not check unaligned chromosomes in the recovered spindles, suggesting that a normal chromosome alignment is maintained only in the oocytes without any microtubule damages during maturation.  相似文献   

16.
《Journal of morphology》2017,278(10):1438-1449
Ovaries of Acipenser baerii are of an alimentary type and probably are meroistic. They contain ovarian nests, individual follicles, inner germinal ovarian epithelium, and fat tissue. Nests comprise cystoblasts, germline cysts, numerous early previtellogenic oocytes, and somatic cells. Cysts are composed of cystocytes, which are connected by intercellular bridges and are in the pachytene stage of the first meiotic prophase. They contain bivalents, finely granular, medium electron dense material, and nucleoli in the nucleoplasm. Many cystocytes degenerate. Oocytes differ in size and structure. Most oocytes are in the pachytene and early diplotene stages and are referred to as the PACH oocytes. Oocytes in more advanced diplotene stage are referred to as the DIP oocytes. Nuclei in the PACH oocytes contain bivalents and irregularly shaped accumulation of DNA (DNA‐body), most probably corresponding to the rDNA‐body. The DNA‐body is composed of loose, fine granular material, and comprises multiple nucleoli. At peripheries, it is fragmented into blocks that remain in contact with the inner nuclear membrane. In the ooplasm, there is the rough endoplasmic reticulum, Golgi complexes, free ribosomes, complexes of mitochondria with cement, fine fibrillar material containing granules, and lipid droplets. The organelles and material of nuclear origin form a distinct accumulation (a granular ooplasm) in the vicinity of the nucleus. Some of the PACH oocytes are surrounded by flat somatic cells. There are lampbrush chromosomes and multiple nucleoli present (early diplotene stage) in the nucleoplasm. These PACH oocytes and neighboring somatic cells have initiated the formation of ovarian follicles. The remaining PACH oocytes transform to the DIP oocytes. The DIP oocytes contain lampbrush chromosomes and a DNA‐body is absent in nuclei. Multiple nucleoli are numerous in the nucleoplasm and granular ooplasm is present at the vegetal region of the oocyte.  相似文献   

17.
Chromosome number, meiotic behavior, and pollen viability were analyzed in 15 species of two genera, Vriesea and Aechmea, native to Rio Grande do Sul, Brazil. This study is the first cytogenetic analysis of these taxa. The chromosome numbers are all n = 25, consistent with the proposed base number of x = 25 for Bromeliaceae. All examined taxa displayed regular bivalent pairing and chromosome segregation at meiosis. Observed meiotic abnormalities include univalents in metaphase I; missing or extra chromosomes and precocious division of centromeres in metaphase II; laggards in telophase I and anaphase II/telophase II. The high pollen viability (>88%) reflects a regular meiosis.  相似文献   

18.
Mammalian oocyte chromosomes undergo 2 meiotic divisions to generate haploid gametes. The frequency of chromosome segregation errors during meiosis I increase with age. However, little attention has been paid to the question of how aging affects sister chromatid segregation during oocyte meiosis II. More importantly, how aneuploid metaphase II (MII) oocytes from aged mice evade the spindle assembly checkpoint (SAC) mechanism to complete later meiosis II to form aneuploid embryos remains unknown. Here, we report that MII oocytes from naturally aged mice exhibited substantial errors in chromosome arrangement and configuration compared with young MII oocytes. Interestingly, these errors in aged oocytes had no impact on anaphase II onset and completion as well as 2-cell formation after parthenogenetic activation. Further study found that merotelic kinetochore attachment occurred more frequently and could stabilize the kinetochore-microtubule interaction to ensure SAC inactivation and anaphase II onset in aged MII oocytes. This orientation could persist largely during anaphase II in aged oocytes, leading to severe chromosome lagging and trailing as well as delay of anaphase II completion. Therefore, merotelic kinetochore attachment in oocyte meiosis II exacerbates age-related genetic instability and is a key source of age-dependent embryo aneuploidy and dysplasia.  相似文献   

19.
In a previous study, barrel-shaped spindles were found in metaphase I oocytes of Ephestia kuehniella (Pyralidae, Lepidoptera). Aster microtubules (MTs) were missing (Wolf, 1993: Cell Motil Cytoskeleton 24:200-204). This points to an acentriolar organization of the spindle apparatus. The present study was aimed at the question of whether gamma-tubulin, a newly detected member of the tubulin superfamily that has often been identified in microtubule-organizing centers, plays a role in the nucleation of MTs in meiotic spindles of the moth. To this end, the distribution of gamma tubulin was examined in oocytes of E. kuehniella using an antibody against gamma-tubulin in combination with indirect immunofluorescence. The antibody evenly decorated spindle MTs in metaphase I oocytes of the moth. Enhanced staining of the spindle poles was not detectable In subsequent stages of meiosis, gamma-tubulin was gradually lost from spindle MTs and was then found at the surface of the so-called elimination chromatin. Female meiosis in Lepidoptera is achiasmatic. The elimination chromatin, i.e., modified and persisting synaptonemal complexes, is believed to keep homologous chromosomes linked until the onset of anaphase I. In meiosis I of female Lepidoptera, the elimination chromatin persists at the spindle equa or between the segregating chromatin masses. It is plausible to assume that gamma-tubulin is involved in spindle organization in the absence of canonical centrosomes. In MTs of metaphase II spindles of E. kuehniella, gamma-tubulin was no longer detectable with our immunological approach. This points to a far-reaching change in spindle organization during transition from meiosis I to meiosis II. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The competence of meiotic chromosome configuration at the time of co-culture of oocytes with spermatozoa is an essential prerequisite for successful in vitro fertilization (IVF). Although this technology has been used in several livestock species, various intrinsic and extrinsic factors affecting the high repeatablity of IVF have yet to be understood. The present study was conducted to determine the appropriate time for coculture of oocytes and spermatozoa in order to optimize the fertilization rate in sheep, goats and buffalo. Oocytes were collected from the ovaries of slaughtered animals. The oocytes were divided into 10 groups and cultured for maturation in TCM-199 supplemented with estrous cow serum for different durations at 38.5 x 0.5/C in a CO(2) incubator. Sheep and goat oocytes were removed from culture medium after 0,6,12,22,24,26,28,30,32 and 36 and buffalo oocytes after 0,6,12,16,20,22,24,26,28, and 36 h. The oocytes were treated with hypotonic solution (0.75 M KCl) and fixed in Carony's fixative on glass slides. The fixed oocytes were stained with Giemsa solution, and the meiotic chromosomes were evaluated under a compound microscope at x 1000 magnification. Observations were recorded on a total of 1328 oocytes (sheep, 409; goat, 727 and buffalo, 192). The sequential configurations of diffused chromatin, pachytene, diplotene (along with nucleoli), diakinesis and metaphase II (MII) were analyzed at different durations of culture. Control oocytes (fixed at 0 h without incubation) were mostly at the pachytene stage, and as the duration of culture increased the instances of diplotene, diakinesis and finally MII increased. Oocytes at the MII stage of meiosis are known to be at the optimal stage of development for co-culture with spermatozoa and successful in vitro fertilization. On the basis of sequential configuration of chromosomes, it was found that the optimal duration of in vitro maturation of oocytes is 32, 30 and 24 h for sheep, goats and buffalo, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号