共查询到20条相似文献,搜索用时 0 毫秒
1.
The trinucleotide repeat disorders comprise an ever expanding list of diseases, all of which are caused by an unstable expanded trinucleotide repeat tract. Huntington's disease (HD) is a member of this family of diseases and more specifically, is a Type II trinucleotide repeat disorder. This means that the mutation in HD is an unstable expanded polyglutamine repeat tract, which is expressed at protein level. There is no cure or beneficial treatment for this fatal neurodegenerative disorder, and patients suffer from progressive motor, cognitive and psychiatric dysfunction. Recent years has seen the development of many genetic models of HD, which allow study of the early phases of disease process, at several different levels of cell function. In addition, these models are being used to investigate the potential of a variety of therapeutic agents for clinical use. Here we review these findings, and their implication for HD pathogenesis. 相似文献
2.
Le Y Gagneten S Larson T Santha E Dobi A v Agoston D Sauer B 《Journal of neurochemistry》2003,84(4):689-697
Several cis-regulatory DNA elements are present in the 5' upstream regulatory region of the enkephalin gene (ENK) promoter. To determine their role in conferring organ-specificity of ENK expression in mice and to circumvent the position effects from random gene insertion that are known to often frustrate such analysis in transgenic mice, we used a Cre-mediated gene knock-in strategy to target reporter constructs to a "safe haven" loxP-tagged locus in the hypoxanthine phosphoribosyltransferase (HPRT) gene. Here we report reliable and reproducible reporter gene expression under the control of the 5' upstream regulatory region of the mouse ENK gene in gene-modified mice using this Cre-mediated knock-in strategy. Comparison of two 5'ENK regulatory regions (one with and the other without known cis-regulatory DNA elements) in the resulting adult mice showed that conserved far-upstream cis-regulatory DNA elements are dispensable for correct organ-specific gene expression. Thus the proximal 1.4 kb of the murine ENK promoter region is sufficient for organ-specificity of ENK gene expression when targeted to a safe-haven genomic locus. These results suggest that conservation of the far-upstream DNA elements serves more subtle roles, such as the developmental or cell-specific expression of the ENK gene. 相似文献
3.
Next generation sequencing based approaches to epigenomics 总被引:1,自引:0,他引:1
Next generation sequencing has brought epigenomic studies to the forefront of current research. The power of massively parallel sequencing coupled to innovative molecular and computational techniques has allowed researchers to profile the epigenome at resolutions that were unimaginable only a few years ago. With early proof of concept studies published, the field is now moving into the next phase where the importance of method standardization and rigorous quality control are becoming paramount. In this review we will describe methodologies that have been developed to profile the epigenome using next generation sequencing platforms. We will discuss these in terms of library preparation, sequence platforms and analysis techniques. 相似文献
4.
Chi MM Fan G Fox EA 《American journal of physiology. Regulatory, integrative and comparative physiology》2004,287(5):R1044-R1053
Neurotrophin-4 (NT-4) knockout mice exhibited decreased innervation of the small intestine by vagal intraganglionic laminar endings (IGLEs) and reduced food satiation. Recent findings suggested this innervation was increased in NT-4 knock-in (NT-4KI) mice. Therefore, to further investigate the relationship between intestinal IGLEs and satiation, meal patterns were characterized using solid and liquid diets, and cholecystokinin (CCK) effects on 30-min solid diet intake were examined in NT-4KI and wild-type mice. NT-4KI mice consuming the solid diet exhibited reduced meal size, suggesting increased satiation. However, compensation occurred through increased meal frequency, maintaining daily food intake and body weight gain similar to controls. Mutants fed the liquid diet displayed a decrease in intake rate, again implying increased satiation, but meal duration increased, which led to an increase in meal size. This was compensated for by decreased meal frequency, resulting in similar daily food intake and weight gain as controls. Importantly, these alterations in NT-4KI mice were opposite, or different, from those of NT-4 knockout mice, further supporting the hypothesis that they are specific to vagal afferent signaling. CCK suppressed short-term intake in mutants and controls, but the mutants exhibited larger suppressions at lower doses, implying they were more sensitive to CCK. Moreover, devazepide prevented this suppression, indicating this increased sensitivity was mediated by CCK-1 receptors. These results suggest that the NT-4 gene knock-in, probably involving increased intestinal IGLE innervation, altered short-term feeding, in particular by enhancing satiation and sensitivity to CCK, whereas long-term control of daily intake and body weight was unaffected. 相似文献
5.
Kan-ichiro Ihara Tomoki Nishimura Tomokazu Fukuda Tetsuya Ookura Katsuhiko Nishimori 《Gene expression patterns : GEP》2012,12(3-4):95-101
The membrane-associated guanylate kinase inverted 2 (MAGI-2) protein, which is known to localize at the tight junction of epithelial cells, contains multiple copies of the PDZ and WW domains in its structure. Although the expression pattern of Magi2 mRNA in representative organs has been previously published, its detailed cellular distribution at the histological level remains unknown. Such detailed information would be useful to clarify the biological function of MAGI-2. Here, we report the generation of Venus reporter knock-in mice for Magi2 in which exon 6 of the gene was substituted by the Venus-encoding sequence. We detected the expression of the Venus reporter protein in kidney podocytes from these knock-in mice. We also detected Venus reporter protein expression in spermatids within the testes and within neurons in various regions of the brain. Detection of the reporter protein from these diverse locations indicated the endogenous expression of MAGI-2 in these tissues. Our data suggested a potential function of MAGI-2 in the glomerular filtration process and sperm cell maturation. These data indicate that the Venus reporter knock-in mouse for Magi2 is a useful model for the further study of Magi2 gene function. 相似文献
6.
Guo H Hong S Jin XL Chen RS Avasthi PP Tu YT Ivanco TL Li Y 《Biochemical and biophysical research communications》2000,273(2):661-665
Emx1 is a mouse homologue of the Drosophila homeobox gene empty spiracles and its expression is restricted to the neurons in the developing and adult cerebral cortex and hippocampus. We reported previously the creation of a line of transgenic mice in which the cre gene was placed directly downstream of the putative Emx1 promoter using ES cell technology. We showed that Cre protein was present in the cerebral cortex of the transgenic mice and was able to mediate loxP-specific recombination in vitro. In the present study, the specificity and efficiency of the cre-mediated recombination were determined using three independent lines of reporter mice and a combination of histochemical staining, neuronal culture, and Southern detection of the genomic DNA. Our results showed that the recombination was highly efficient in all three lines of reporter mice tested and confirmed that the deletion was restricted to the neurons in the cerebral cortex and hippocampus. Furthermore, we have determined that the recombination efficiency in the cerebral cortex was 91%. Our results suggest that Emx1 is not expressed in every neuron in the developing and adult cerebral cortex. This line of cre mice should contribute to the studies of cortical development and plasticity. 相似文献
7.
Elevated levels of fetal γ-globin can cure disorders caused by mutations in the adult β-globin gene. This clinical finding has motivated studies to improve our understanding of hemoglobin switching. Unlike humans, mice do not express a distinct fetal globin. Transgenic mice that contain the human β-globin locus complete their fetal-to-adult hemoglobin switch prior to birth, with human γ-globin predominantly restricted to primitive erythroid cells. We established humanized (100% human hemoglobin) knock-in mice that demonstrate a distinct fetal hemoglobin (HbF) stage, where γ-globin is the dominant globin chain produced during mid- to late gestation. Human γ- and β-globin gene competition is evident around the time of birth, and γ-globin chain production diminishes in postnatal life, with transient production of HbF reticulocytes. Following completion of the γ- to-β-globin switch, adult erythroid cells synthesize low levels of HbF. We conclude that the knock-in globin genes are expressed in a pattern strikingly similar to that in human development, most notably with postnatal resolution of the fetal-to-adult hemoglobin switch. Our findings are consistent with the importance of BCL11A in hemoglobin switching, since removal of intergenic binding sites for BCL11A results in human γ-globin expression in mouse definitive erythroid cells. 相似文献
8.
Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice
下载免费PDF全文

Sakurai K Onishi A Imai H Chisaka O Ueda Y Usukura J Nakatani K Shichida Y 《The Journal of general physiology》2007,130(1):21-40
Rod and cone photoreceptor cells that are responsible for scotopic and photopic vision, respectively, exhibit photoresponses different from each other and contain similar phototransduction proteins with distinctive molecular properties. To investigate the contribution of the different molecular properties of visual pigments to the responses of the photoreceptor cells, we have generated knock-in mice in which rod visual pigment (rhodopsin) was replaced with mouse green-sensitive cone visual pigment (mouse green). The mouse green was successfully transported to the rod outer segments, though the expression of mouse green in homozygous retina was approximately 11% of rhodopsin in wild-type retina. Single-cell recordings of wild-type and homozygous rods suggested that the flash sensitivity and the single-photon responses from mouse green were three to fourfold lower than those from rhodopsin after correction for the differences in cell volume and levels of several signal transduction proteins. Subsequent measurements using heterozygous rods expressing both mouse green and rhodopsin E122Q mutant, where these pigments in the same rod cells can be selectively irradiated due to their distinctive absorption maxima, clearly showed that the photoresponse of mouse green was threefold lower than that of rhodopsin. Noise analysis indicated that the rate of thermal activations of mouse green was 1.7 x 10(-7) s(-1), about 860-fold higher than that of rhodopsin. The increase in thermal activation of mouse green relative to that of rhodopsin results in only 4% reduction of rod photosensitivity for bright lights, but would instead be expected to severely affect the visual threshold under dim-light conditions. Therefore, the abilities of rhodopsin to generate a large single photon response and to retain high thermal stability in darkness are factors that have been necessary for the evolution of scotopic vision. 相似文献
9.
10.
Gong Qian-qian Dou Zhi-lin Wang Xiao Zhang Ke-yi Chen Hao Gao Jian-gang Sun Xiao-yang 《Molecular biology reports》2021,48(8):6015-6023
Molecular Biology Reports - Sperm acquire the ability to fertilize ova through a complex process of epididymal maturation. To identify the functions of genes expressed in the proximal epididymis,... 相似文献
11.
Hu JC Hu Y Smith CE McKee MD Wright JT Yamakoshi Y Papagerakis P Hunter GK Feng JQ Yamakoshi F Simmer JP 《The Journal of biological chemistry》2008,283(16):10858-10871
Enamelin is critical for proper dental enamel formation, and defects in the human enamelin gene cause autosomal dominant amelogenesis imperfecta. We used gene targeting to generate a knock-in mouse carrying a null allele of enamelin (Enam) that has a lacZ reporter gene replacing the Enam translation initiation site and gene sequences through exon 7. Correct targeting of the transgene was confirmed by Southern blotting and PCR analyses. No enamelin protein could be detected by Western blotting in the Enam-null mice. Histochemical 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside (X-gal) staining demonstrated ameloblast-specific expression of enamelin. The enamel of the Enam(+/-) mice was nearly normal in the maxillary incisors, but the mandibular incisors were discolored and tended to wear rapidly where they contacted the maxillary incisors. The Enam(-/-) mice showed no true enamel. Radiography, microcomputed tomography, and light and scanning electron microscopy were used to document changes in the enamel of Enam(-/-) mice but did not discern any perturbations of bone, dentin, or any other tissue besides the enamel layer. Although a thick layer of enamel proteins covered normal-appearing dentin of unerupted teeth, von Kossa staining revealed almost a complete absence of mineral formation in this protein layer. However, a thin, highly irregular, mineralized crust covered the dentin on erupted teeth, apparently arising from the formation and fusion of small mineralization foci (calcospherites) in the deeper part of the accumulated enamel protein layer. These results demonstrate ameloblast-specific expression of enamelin and reveal that enamelin is essential for proper enamel matrix organization and mineralization. 相似文献
12.
13.
Jean-Fran?ois?Schmouth Mauro?Castellarin Stéphanie?Laprise Kathleen?G?Banks Russell?J?Bonaguro Simone?C?McInerny Lisa?Borretta Mahsa?Amirabbasi Andrea?J?Korecki Elodie?Portales-Casamar Gary?Wilson Lisa?Dreolini Steven?JM?Jones Daniel?Goldowitz Robert?A?Holt Elizabeth?M?Simpson
Background
The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo.Results
In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear.Conclusions
We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.14.
15.
Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. 总被引:14,自引:0,他引:14
下载免费PDF全文

R Sotillo P Dubus J Martín E de la Cueva S Ortega M Malumbres M Barbacid 《The EMBO journal》2001,20(23):6637-6647
We have introduced a point mutation in the first coding exon of the locus encoding the cyclin-dependent kinase 4 (Cdk4) by homologous recombination in embryonic stem cells. This mutation (replacement of Arg24 by Cys) was first found in patients with hereditary melanoma and renders Cdk4 insensitive to INK4 inhibitors. Here, we report that primary embryonic fibroblasts expressing the mutant Cdk4R24C kinase are immortal and susceptible to transformation by Ras oncogenes. Moreover, homozygous Cdk4(R24C/R24C) mutant mice develop multiple tumors with almost complete penetrance. The most common neoplasia (endocrine tumors and hemangiosarcomas) are similar to those found in pRb(+/-) and p53(-/-) mice. This Cdk4 mutation cooperates with p53 and p27(Kip1) deficiencies in decreasing tumor latency and favoring development of specific tumor types. These results provide experimental evidence for a central role of Cdk4 regulation in cancer and provide a valuable model for testing the potential anti-tumor effect of Cdk4 inhibitors in vivo. 相似文献
16.
In vivo functions of mitogen-activated protein kinases: conclusions from knock-in and knock-out mice 总被引:4,自引:0,他引:4
Multicellular organisms achieve intercellular communication by means of signalling molecules whose effect on the target cell
is mediated by signal transduction pathways. Such pathways relay, amplify and integrate signals to elicit appropriate biological
responses. Protein kinases form crucial intermediate components of numerous signalling pathways. One group of protein kinases,
the mitogen-activated protein kinases (MAP kinases) are kinases involved in signalling pathways that respond primarily to
mitogens and stress stimuli. In vitro studies revealed that the MAP kinases are implicated in several cellular processes,
including cell division, differentiation, cell survival/apoptosis, gene expression, motility and metabolism. As such, dysfunction
of specific MAP kinases is associated with diseases such as cancer and immunological disorders. However, the genuine in vivo
functions of many MAP kinases remain elusive. Genetically modified mouse models deficient in a specific MAP kinase or expressing
a constitutive active or a dominant negative variant of a particular MAP kinase offer valuable tools for elucidating the biological
role of these protein kinases. In this review, we focus on the current status of MAP kinase knock-in and knock-out mouse models
and their phenotypes. Moreover, examples of the application of MAP kinase transgenic mice for validating therapeutic properties
of specific MAP kinase inhibitors, and for investigating the role of MAP kinase in pathogen-host interactions will be discussed. 相似文献
17.
H Z Yin A Nalbandian C-I Hsu S Li K J Llewellyn T Mozaffar V E Kimonis J H Weiss 《Cell death & disease》2012,3(8):e374
Pathological features of amyotrophic lateral sclerosis (ALS) include, in addition to selective motor neuron (MN) degeneration, the occurrence of protein aggregates, mitochondrial dysfunction and astrogliosis. SOD1 mutations cause rare familial forms of ALS and have provided the most widely studied animal models. Relatively recent studies implicating another protein, TDP-43, in familial and sporadic forms of ALS have led to the development of new animal models. More recently, mutations in the valosin-containing protein (VCP) gene linked to the human genetic disease, Inclusion Body Myopathy associated with Paget''s disease of bone and frontotemporal dementia (IBMPFD), were found also to be associated with ALS in some patients. A heterozygous knock-in VCP mouse model of IBMPFD (VCPR155H/+) exhibited muscle, bone and brain pathology characteristic of the human disease. We have undertaken studies of spinal cord pathology in VCPR155H/+ mice and find age-dependent degeneration of ventral horn MNs, TDP-43-positive cytosolic inclusions, mitochondrial aggregation and progressive astrogliosis. Aged animals (∼24–27 months) show electromyography evidence of denervation consistent with the observed MN loss. Although these animals do not develop rapidly progressive fatal ALS-like disease during their lifespans, they recapitulate key pathological features of both human disease and other animal models of ALS, and may provide a valuable new model for studying events preceding onset of catastrophic disease. 相似文献
18.
19.
Construction of transgenic mice with tissue-specific acceleration of mitochondrial DNA mutagenesis 总被引:6,自引:0,他引:6
Transgenic mice having rapid accumulation of mitochondrial DNA (mtDNA) mutations specifically in the heart were created. These mice contained a transgene encoding a proofreading-deficient, mouse mitochondrial DNA polymerase (pol gamma) driven by the promoter for the cardiac-specific alpha-myosin heavy chain. Starting shortly after birth greater than 95% of all pol gamma mRNA in the heart was transgene derived; expression in other tissues was low or absent. Mutations in cardiac mtDNA began to accumulate by 7 days after birth. At 1 month of age the frequency of point mutations was 0.014% as determined by DNA sequencing of cloned mtDNA. By long-extension PCR multiple different deletion mutations that had removed several thousand basepairs of genomic sequence were also detected. Sequencing of two deletion molecules showed that one was flanked at the breakpoint by direct repeat sequences. The expression of proofreading-deficient pol gamma had no apparent deleterious effect on mitochondrial DNA and protein content, gene expression, or respiratory function. However, associated with the rise in mtDNA mutation levels was the development of cardiomyopathy as evidenced by enlarged hearts in the transgenic mice. These mice may prove to be useful models to study the pathogenic effects of elevated levels of mitochondrial DNA mutations in specific tissues. 相似文献
20.
Lee H Zahra D Vogelzang A Newton R Thatcher J Quan A So T Zwirner J Koentgen F Padkjaer SB Mackay F Whitfeld PL Mackay CR 《Nature biotechnology》2006,24(10):1279-1284
Complement component C5a binds C5a receptor (C5aR) and facilitates leukocyte chemotaxis and release of inflammatory mediators. We used neutrophils from human C5aR knock-in mice, in which the mouse C5aR coding region was replaced with that of human C5aR, to immunize wild-type mice and to generate high-affinity antagonist monoclonal antibodies (mAbs) to human C5aR. These mAbs blocked neutrophil migration to C5a in vitro and, at low doses, both prevented and reversed inflammatory arthritis in the murine K/BxN model. Of approximately 40 mAbs generated to C5aR, all potent inhibitors recognized a small region of the second extracellular loop that seems to be critical for regulation of receptor activity. Human C5aR knock-in mice not only facilitated production of high-affinity mAbs against an important human therapeutic target but were also useful in preclinical validation of the potency of these antagonists. This strategy should be applicable to other important mAb therapeutics. 相似文献