首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell adhesion and motility is of fundamental importance during development, normal physiology and pathologic conditions such as tumor metastasis. Focal adhesion (FA) proteins and their dynamic interactions play a critical role in the regulation of directed cell migration upon extracellular guidance cues. Using a combination of pharmacological inhibitors, knockout and knockdown cells, dominant negative and constitutively active mutants, we recently reported that the dynamic interaction and balancing phosphorylation of paxillin-PKL(GIT2) complex were critical for the cell polarity, thus directional migration upon cell adhesion and growth factor signaling. Similarly, restricted regulation of Arf6 and Rho families GTPase activities in polarized migrating cells is implicated in recent studies using cell culture and in vivo models.  相似文献   

2.
Cell adhesion and motility is of fundamental importance during development, normal physiology and pathologic conditions such as tumor metastasis. Focal adhesion proteins and their dynamic interactions play a critical role in the regulation of directed cell migration upon exposure to extracellular guidance cues. Using a combination of pharmacological inhibitors, knockout and knockdown cells and mutant protein expression, we recently reported that following adhesion and growth factor stimulation the dynamic interaction between paxillin and PKL(GIT2) is regulated by Src/FAK-dependent phosphorylation of PKL and that this interaction is necessary for the coordination of Rho family GTPase signaling controlling front-rear cell polarity and thus directional migration. Herein, we discuss the implications of these observations.Key words: FAK, Src, PTP-PEST, PIX, PAK, Arf6, Rac1, cell polarity, cell migration, tyrosine phosphorylation  相似文献   

3.
Smooth muscle cell proliferation can be inhibited by heparan sulfate proteoglycans whereas the removal or digestion of heparan sulfate from perlecan promotes their proliferation. In this study we characterized the glycosaminoglycan side chains of perlecan isolated from either primary human coronary artery smooth muscle or endothelial cells and determined their roles in mediating cell adhesion and proliferation, and in fibroblast growth factor (FGF) binding and signaling. Smooth muscle cell perlecan was decorated with both heparan sulfate and chondroitin sulfate, whereas endothelial perlecan contained exclusively heparan sulfate chains. Smooth muscle cells bound to the protein core of perlecan only when the glycosaminoglycans were removed, and this binding involved a novel site in domain III as well as domain V/endorepellin and the α2β1 integrin. In contrast, endothelial cells adhered to the protein core of perlecan in the presence of glycosaminoglycans. Smooth muscle cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains and promoted the signaling of FGF2 but not FGF1. Also endothelial cell perlecan bound both FGF1 and FGF2 via its heparan sulfate chains, but in contrast, promoted the signaling of both growth factors. Based on this differential bioactivity, we propose that perlecan synthesized by smooth muscle cells differs from that synthesized by endothelial cells by possessing different signaling capabilities, primarily, but not exclusively, due to a differential glycanation. The end result is a differential modulation of cell adhesion, proliferation and growth factor signaling in these two key cellular constituents of blood vessels.  相似文献   

4.
The highly related ERM (Ezrin, Radixin, Moesin) proteins provide a regulated linkage between the membrane and the underlying actin cytoskeleton. They also provide a platform for the transmission of signals in responses to extracellular cues. Studies in different model organisms and in cultured cells have highlighted the importance of ERM proteins in the generation and maintenance of specific domains of the plasma membrane. A central question is how do ERM proteins coordinate actin filament organization and membrane protein transport/stability with signal transduction pathways to build up complex structures? Through their interaction with numerous partners including membrane proteins, actin cytoskeleton and signaling molecules, ERM proteins have the ability to organize multiprotein complexes in specific cellular compartments. Likewise, ERM proteins participate in diverse functions including cell morphogenesis, endocytosis/exocytosis, adhesion and migration. This review focuses on aspects still poorly understood related to the function of ERM proteins in epithelial cell adhesion and migration.Key words: epithelial cells, membrane-cytoskeleton interface, morphogenesis, ERM proteins, cell adhesion  相似文献   

5.
Reassessing the role of phosphocaveolin-1 in cell adhesion and migration   总被引:1,自引:0,他引:1  
Although phosphorylation on tyrosine 14 was identified early in the discovery of caveolin-1, the functional significance of this modification still remains elusive. Recent evidence points to a role of caveolin-1 tyrosine 14 phosphorylation in cell adhesion and migration. These results are based on a variety of tools, including a widely used mouse monoclonal anti-phosphocaveolin-1 antibody, which labels, in cultured cells, a protein localized at or near focal adhesions. We here report results from three independent laboratories, showing that this antibody recognizes phosphocaveolin-1 amongst other proteins in immunoblot analyses and that the signal obtained with this antibody in immunostaining experiments is in part due to labeling of paxillin. Published data need to be interpreted keeping in mind that images of phosphocaveolin-1 cellular localization obtained using this antibody are not valid. We re-evaluate the current knowledge about the role of caveolin-1 in cell adhesion and migration in view of this new information.  相似文献   

6.
During inflammation and recirculation, lymphocytes migrate into tissues by traversing the capillary endothelium, a process known as extravasation. After crossing the endothelial cells, lymphocytes come into contact with the basement membrane, which is a specialized layer of extracellular matrix containing predominantly laminin, collagen type IV, entactin, and heparan sulfate proteoglycans. In tissue invasion by inflammatory cells and metastatic tumor cells, the basement membrane serves as a substratum for cell adhesion and migration. However, the role of basement membrane in lymphocyte extravasation remains unclear. In this study, we investigated the effect of basement membrane on lymphocyte adhesion, migration, and proliferation, using matrigel as a model for basement membrane. We observed that matrigel promotes both lymphocyte adhesion and migration, with entactin primarily responsible for promoting adhesion and laminin for promoting migration. In addition, activation of lymphocytes by anti-CD3 enhances their adhesion and migration on matrigel-coated substratum. We also observed that matrigel inhibits the proliferation of lymphocytes stimulated by Con A. Furthermore, we demonstrated that laminin is the matrigel component responsible for inhibiting lymphocyte proliferation. However, matrigel has no effect on the proliferation of lymphocytes stimulated by LPS. These results suggest that matrigel has different effects on lymphocyte subpopulations. In agreement with the results on proliferation, matrigel also inhibits the production of IL-2 by Con A-stimulated lymphocytes.  相似文献   

7.
8.
Association of focal adhesion kinase with Grb7 and its role in cell migration.   总被引:11,自引:0,他引:11  
Focal adhesion kinase (FAK) has been implicated to play a key role in integrin-mediated signal transduction in cell migration. Grb7 is an Src homology (SH) 2-containing and pleckstrin homology domain-containing molecule, which shares significant homology with the Caenorhabditis elegans gene for Mig-10 involved in cell migration during embryogenesis. Here, we report that the SH2 domain of Grb7 can directly interact with FAK through Tyr-397, a major autophosphorylation site in vitro and in vivo. This interaction is cell adhesion-dependent, suggesting that the FAK-Grb7 complex is involved in integrin signaling. Using tetracycline-regulated expression system, we showed that overexpression of Grb7 enhanced cell migration toward fibronectin, whereas overexpression of its SH2 domain alone inhibited cell migration. In addition, we found that phosphorylation of FAK or p130(cas) was not affected by the expression of either Grb7 or its SH2 domain alone, suggesting that Grb7 is downstream of FAK and does not compete with Src for binding to FAK in vivo. Taken together, these results suggest that the FAK-Grb7 complex plays a role in cell migration stimulated by integrin signaling through FAK.  相似文献   

9.
10.
A critical role for Syk in endothelial cell proliferation and migration   总被引:6,自引:0,他引:6  
Syk is a protein-tyrosine kinase that is widely expressed in haematopoietic cells and involved in coupling activated immunoreceptors to downstream signaling. On the other hand, Syk-deficient mice showed severe petechiae in utero and died shortly after birth. Recently we have shown the expression of Syk in endothelial cells and morphological defects of these cells in embryonic Syk-deficient mice. Here we report that both proliferation and migration of human umbilical vein endothelial cells were severely impaired by adenovirus-mediated expression of Syk dominant negative mutants. Furthermore, a close relationship between Syk kinase activity and extracellular signal-regulated kinase activation was suggested. Our results indicate that Syk plays a critical role in endothelial cell functions, including morphogenesis, cell growth, migration, and survival, and contributes to maintaining vascular integrity in vivo.  相似文献   

11.
Versican is an extracellular matrix proteoglycan produced by many cells. Although versican is generally known as a large chondroitin sulfate proteoglycan (CSPG), the smallest splice variant, V3, consists only of the amino- and carboxy-terminal globular domains and is therefore predicted to be a small glycoprotein, lacking CS chains. The large size, negative charge, and ability of versican variants to form pericellular coats with hyaluronan are responsible for many of its effects. V3, lacking the large size and high charge density, but retaining the hyaluronan-binding domain of the larger isoforms, may have different effects on cell phenotype. To determine whether V3 alters cell phenotype, Fisher rat arterial smooth muscle cells (ASMCs), which express the larger CSPG versican splice forms (V0 and V1) were retrovirally transduced with the rat V3 cDNA. Northern analysis for versican RNAs confirmed that cells transduced with V3 retrovirus, but not cells tranduced with the empty vector, expressed RNA of the size expected for V3/neo(r) bicistronic RNA. V3 overexpressing cells were more spread on tissue culture plastic, had a smaller length-to-breadth ratio and were more resistant to release from the culture dish by trypsin. Interference reflection microscopy of sparsely plated cells showed larger areas of close contact between the V3 expressing cells and the coverslip, in comparison to control cells. Focal contacts in the periphery of V3 expressing cells were larger. Growth and migration studies revealed that V3 transduced cells grow slower and migrate a shorter distance in a scratch wound assay. The increased adhesion and the inhibition of migration and proliferation resulting from V3 overexpression are the opposites of the known and predicted effects of the other variants of versican. V3 may exert these effects through changes in pericellular coat formation, either by competing with larger isoforms for hyaluronan-binding, or by altering other components of the pericellular matrix.  相似文献   

12.
Cell migration is an important process in such phenomena as growth, development, and wound healing. The control of cell migration is orchestrated in part by cell surface adhesion molecules. These molecules fall into two major categories: those that bind to extracellular matrix and those that bind to adjacent cells. Here, we report on the role of a cell-cell adhesion molecule, platelet-endothelial cell adhesion molecule-1, (PECAM-1), a member of the lg superfamily, in the modulation of cell migration and cell-cell adhesion. PECAM-1 is a 120-130 kDa integral membrane protein that resides on endothelial cells and localizes at sites of cell-cell contact. Since endothelial cells express PECAM-1 constitutively, we studied the effects of PECAM-1 on cell-cell adhesion and migration in a null-cell population. Specifically, we transfected NIH/3T3 cells with the full length PECAM-1 molecule (two independent clones). Transfected cells containing only the neomycin resistance gene, cells expressing a construct coding for the extracellular domain of the molecule, and cells expressing the neu oncogene were used as controls. The PECAM-1 transfectants appeared smaller and more polygonal and tended to grow in clusters. Indirect immunofluorescence of PECAM-1 transfectants showed peripheral staining at sites of cell-cell contact, while the extracellular domain transfectants and the control cells did not. In two quantitative migration assays, the full-length PECAM-1 transfectants migrated more slowly than control cells. Thus, PECAM-1 transfected into a null cell appears to localize to sites of cell-cell contact, promote cell-cell adhesion, and diminish the rate of migration. These findings suggest a role for this cell-cell adhesion molecule in the process of endothelial cell migration.  相似文献   

13.
14.
15.
Protocadherin-18a (Pcdh18a) belongs to the δ2-protocadherins, which constitute the largest subgroup within the cadherin superfamily. Here we present isolation of a full-length zebrafish cDNA that encodes a protein highly similar to human and mouse Pcdh18. Zebrafish pcdh18a is expressed in a complex and dynamic pattern in the nervous system from gastrula stages onward, with lesser expression in mesodermal derivatives. Pcdh18a-eGFP fusion protein is expressed in a punctate manner on the membranes between cells. Overexpression of pcdh18a in embryos caused cyclopia, mislocalization of hatching gland tissue, and duplication or splitting of the neural tube. Most neural markers tested were expressed in an approximately correct A-P pattern. By cell transplantation we showed that overexpression of pcdh18a causes diminished cell migration and reduced cell protrusions, resulting in a tendency of cells to stay more firmly aggregated, probably due to increased cell adhesion. In contrast, knockdown of pcdh18a by a morpholino oligonucleotide caused defects in epiboly, and led to reduced cell adhesion as shown by cell dissociation, sorting and transplantation experiments. These results suggest a role for Pcdh18a in cell adhesion, migration and behavior but not cell specification during gastrula and segmentation stages of development.  相似文献   

16.
Nectins are Ca2+-independent immunoglobulin (Ig)-like cell-cell adhesion molecules, which comprise a family consisting of four members. Nectins have five activities: (1) they show Ca2+-independent cell-cell adhesion activity by homo- and hetero-trans-interactions through their extracellular regions; (2) they bind afadin, an actin filament (F-actin)-binding protein, through their cytoplasmic tails and are connected to the actin cytoskeleton; (3) they induce activation of Cdc42 and Rac small G proteins through their cytoplasmic tails; (4) they bind Par-3, a cell polarity protein, through their cytoplasmic tails; and (5) they heterophilically trans-interact with Necls, nectin-like molecules, through their extracellular regions. Through these activities, nectins regulate a variety of cellular functions, including adhesion, migration, and polarization. Here we describe these activities and functions of nectins.  相似文献   

17.
The role of bacterial cell wall hydrophobicity in adhesion.   总被引:13,自引:18,他引:13       下载免费PDF全文
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

18.
In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.  相似文献   

19.
From the onset of melanocyte specification from the neural crest, throughout their migration during embryogenesis and until they reside in their niche in the basal keratinocyte layer, melanocytes interact in dynamic ways with the extracellular environment of the growing embryo. To recognize and to adhere to their environment, melanocytes depend on heterodimeric cell surface receptors of the family of integrins. In addition to the control of adhesive interactions between melanocytes and the extracellular matrix scaffold secreted by fibroblasts and keratinocytes, the integrin receptors allow cells also to sense the mechanical condition of the extracellular environment, responding by intracellular signaling, triggering cell survival, proliferation or migration events. In this review, we summarize the recently emerged concepts that explain integrin-dependent adhesion and how this adhesion system interfaces with integrin-dependent signaling events. The gained information will help to understand melanocyte behavior in pathological situations such as melanoma growth and metastasis formation.  相似文献   

20.
Fluoroquinolone antibiotics have been used widely in humans and domestic animals, including horses, because of their broad-spectrum bactericidal activity, and relative safety. The use of fluoroquinolones, however, is not without risk. Tendonitis and spontaneous tendon rupture have been reported in people during or following therapy with fluoroquinolones. We have studied the effects of enrofloxacin, a fluoroquinolone antibiotic used commonly in domestic animals, on tendon cell cultures established from equine superficial digital flexor tendons. Effects on cell proliferation and morphology were studied using cell counting and scanning electron microscopy. Monosaccharide content and composition was determined by gas chromatography-mass spectrometry analysis. Western and Northern blot analyses were utilized to evaluate the synthesis and expression of two proteoglycans, biglycan and decorin. Our data demonstrate that enrofloxacin inhibits cell proliferation, induces morphological changes, decreases total monosacharide content and alters small proteoglycan synthesis at the glycosylation level in equine tendon cell cultures. These effects are more pronounced in juvenile tendon cells than in adult equine tendon cells. We hypothesize that morphological changes and inhibition of cell proliferation are a result of impaired production of biglycan and decorin, proteoglycans involved in fibrillogenesis of collagen, the most important structural component of the tendon of enrofloxacin-treated tendon cells. Our findings suggest that fluoroquinolones should be used with caution in horses, especially in foals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号