首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a rapid and sensitive two-color flow cytometric method which allows the simultaneous quantification of both the phagocytosis rate and the oxidative burst activation of polymorphonuclear leukocytes (PMNLs). The oxidation of hydroethidine (HE) to ethidium bromide (EB) was performed by the oxidative neutrophil products within the cells during the respiratory burst, which was stimulated by phagocytized fluorescein-labeled Staphylococcus aureus. By means of flow cytometry we measured red EB fluorescence emission together with green fluorescence, which was emitted by the ingested fluoresceinated bacteria. The fluorescence intensity was proportional to the number of bacteria ingested. Adherent bacteria were distinguished from the ingested ones. This two-color cellular staining permits measurement of two different functions of neutrophils in one step. This method could be of interest for the determination of the interactions between neutrophils and bacteria and for the investigations on infectious diseases in chronic granulomatous disease patients.  相似文献   

2.
Surface charge and hydrophobicity of Treponema pallidum have been investigated in relation to phagocytosis by human polymorphonuclear leucocytes (PMNs) in vitro. The treponemal surface was relatively hydrophobic and negatively charged but despite these properties, phagocytosis, as assessed by luminol-enhanced chemiluminescence, was minimal in the absence of serum. Preopsonization of bacteria with serum reduced surface hydrophobicity but promoted phagocytosis, suggesting that specific immune mechanisms may be more important in controlling phagocytosis of T. pallidum in vitro than non-specific surface properties. T. pallidum evoked a much weaker chemiluminescence response from PMNs than the non-pathogenic treponeme Treponema phagedenis biotype Reiterii even though similar numbers of bacteria were phagocytosed, suggesting differences in the reactivity of the surface components of the two organisms toward PMNs. The reactivity of T. pallidum towards PMNs could be increased by removal of the bacterial outer membrane by Triton X-100 treatment. These observations reinforce the suggestion that the outer surface of T. pallidum is inherently inert.  相似文献   

3.
In this paper we optimize a flow cytometric method for evaluating the phagocytic activity of leucocytes in gilthead seabream (Sparus aurata L.) and characterize the phagocytic cells observed. Optimal conditions were established for the fluorescein-labelling and analysis of the bacterium Vibrio anguillarum by flow cytometry. Head-kidney leucocytes were incubated with the heat-killed fluorescein isothiocyanate (FITC)-labelled bacteria for different periods, during which the kinetics of phagocytosis was studied. Attached and interiorized bacteria were distinguished. Although phagocytic ability reached a maximum after 60 min, phagocytic capacity reached its maximum at 20 min. The amount of ingested bacteria per phagocyte was estimated from the mean fluorescence of the leucocytes. Cytochalasin B or colchicine was used to inhibit phagocytosis. Monocyte-macrophages and acidophilic granulocytes showed phagocytic activity as demonstrated by transmission electron microscopy. In conclusion, the technique presented allows the screening of thousands of cells, and individual cell evaluation, by quantifying interiorized particles in fish phagocytes. Our ultrastructural results demonstrate that V. anguillarum is actively phagocytized by seabream macrophages and acidophilic granulocytes.  相似文献   

4.
BACKGROUND: Fluorescein isothiocyanate (FITC) is used widely to label the targets used in flow cytometric phagocytosis assays. Unfortunately, the fluorescence intensity of phagocytosed FITC-labeled targets is influenced by changes in intracellular pH level, making quantitative measurements with this fluorophore problematic. We describe the use of SYTOX green nucleic acid stain to measure phagocytosis by flow cytometry. METHODS: Suspensions of isopropyl alcohol-permeabilized Escherichia coli DH5alpha were stained with the SYTOX green dye and then incubated with resident peritoneal macrophages. The samples were analyzed by flow cytometry and phagocytosis was determined by gating the cells. RESULTS: Results are expressed as percentage of phagocyte-associated green fluorescent cells. The validity of the method was shown by the effects of a phagocytosis inhibitor (incubation at 4 degrees C) or enhancer (gamma interferon [IFN- gamma] treatment) being accurately assessed with this assay. CONCLUSIONS: The method described was reproducible and provides an advantageous alternative to the use of FITC to label bacteria for the flow cytometric measurement of target uptake by phagocytic cells.  相似文献   

5.
Group B streptococci (GBS) are a major cause of meningitis and septicemia in neonates and numerous invasive diseases in adults. Host defense against GBS infections relies upon phagocytosis and killing by phagocytic cells. To better understand the importance of this defense mechanism a flow cytometric assay was developed to study phagocytosis and oxidative burst of leukocytes stimulated by bacteria. GBS labeled with fluorescein isothiocyanate were used for phagocytosis experiments and the extracellular fluorescence was quenched by ethidium bromide to differentiate intracellular from extracellular bacteria. The intracellular oxidative burst was determined by using 2',7'-dichlorofluorescein diacetate to measure hydrogen peroxide production and hydroethidine for superoxide anion production. We found that for GBS serotypes Ia, Ib/c, II, and III phagocytosis was greater in neutrophils than monocytes. Hydrogen peroxide production and superoxide anion production were also greater for neutrophils than monocytes in all serotypes tested. A comparison of seven type III strains revealed greater phagocytosis and superoxide anion production by neutrophils than monocytes but no difference in hydrogen peroxide production. Therefore, monocytes react similarly as neutrophils in response to GBS but at a reduced level. This methodology of measuring both phagocytosis of GBS and oxidative burst simultaneously in neutrophils and monocytes should be very useful in further studies on the importance of factors such as complement and IgG receptors for the killing of bacteria.  相似文献   

6.
Application of liquid, aerosolized, and vaporized perfluorocarbons (PFC) in acute lung injury has shown anti-inflammatory effects. Although this may be beneficial in states of pulmonary hyperinflammation, it also could increase susceptibility to nosocomial lung infection. We hypothesized that PFC impair cellular host defense and therefore investigated in an in vitro model the influence of perfluorohexane (PFH) on crucial mechanisms of bacterial elimination in human neutrophils and monocytes. Using scanning and transmission electron microscopy, we could show membrane-bound and ingested PFH particles that morphologically did not alter adherence and phagocytosis of Escherichia coli or leukocyte viability. The amount of adherent and phagocytosed bacteria as determined by flow cytometry was not influenced in cells only pretreated with PFH for 1 and 4 h. When PFH was present during E. coli challenge, bacterial adherence was decreased in polymorphonuclear neutrophils, but respective intracellular uptake was not impaired and was even significantly promoted in monocytes. Overall, E. coli-induced respiratory burst capacity was not reduced by PFH. Our findings provide evidence that key functions of innate host defense are not compromised by PFH treatment in vitro.  相似文献   

7.

Background  

Phagocytosis assays are traditionally performed in vitro using polymorphonuclear leukocytes (PMNs) isolated from peripheral blood or the peritoneum and heat-killed, pre-opsonized organisms. These assays may not adequately mimic the environment within the infected lung. Our laboratory therefore has developed a flow cytometric in vivo phagocytosis assay that enables quantification of PMN phagocytosis of viable bacteria within the lungs of rats. In these studies, rats are injected transtracheally with lipopolysaccharide (LPS) to recruit PMNs to their lungs. They are then infected with live 5(-and 6) carboxyfluorescein diacetate succinimidyl ester (CFDA/SE) labeled type 3 Streptococcus pneumoniae. Bronchoalveolar lavage is performed and resident alveolar macrophages and recruited PMNs are labeled with monoclonal antibodies specific for surface epitopes on each cell type. Three color flow cytometry is utilized to identify the cell types, quantify recruitment, and determine uptake of the labeled bacteria.  相似文献   

8.
BACKGROUND: Plug flow cytometry is a recently developed system for the automated delivery of multiple small boluses or "plugs" of cells or particles to the flow cytometer for analysis. Important system features are that sample plugs are of precisely defined volume and that the sample vessel need not be pressurized. We describe how these features enable direct cell concentration determinations and novel ways to integrate flow cytometers with other analytical instruments. METHODS: Adhesion assays employed human polymorphonuclear neutrophils (PMNs) loaded with Fura Red and Chinese hamster ovary (CHO) cells cotransfected with genes for green fluorescent protein (GFP) and human P-selectin. U937 cells expressing the human 7-transmembrane formyl peptide receptor were loaded with the fluorescent probe indo-1 for intracellular ionized calcium determinations. A computer-controlled syringe or peristaltic pump loaded the sample into a sample loop of the plug flow coupler, a reciprocating eight-port valve. When the valve position was switched, the plug of sample in the sample loop was transported to the flow cytometer by a pressure-driven fluid line. RESULTS: In stirred mixtures of PMNs and CHO cells, we used plug flow cytometry to directly quantify changes in concentrations of nonadherent singlet PMNs. This approach enabled accurate quantification of adherent PMNs in multicell aggregates. We constructed a novel plug flow interface between the flow cytometer and a cone-plate viscometer to enable real-time flow cytometric analysis of cell-cell adhesion under conditions of uniform shear. The High Throughput Pharmacology System (HTPS) is an instrument used for automated programming of complex pharmacological cell treatment protocols. It was interfaced via the plug flow coupling device to enable rapid (< 5 min) flow cytometric characterization of the intracellular calcium dose-response profile of U937 cells to formyl peptide. CONCLUSIONS: By facilitating the coupling of flow cytometers to other fluidics-based analytical instruments, plug flow cytometry has extended analytical capabilities in cell adhesion and pharmacological characterization of receptor-ligand interactions.  相似文献   

9.
The leukocyte CD44 and CD45 cell surface receptors are associated via the linker proteins ankyrin and fodrin with the cytoskeleton, which itself is important in immune cell functions such as adherence, chemotaxis, and phagocytosis. The effects of rat antihuman CD44 and CD45 monoclonal antibodies on phagocytosis of fluoresceinated heat-killed Staphylococcus aureus 502A by normal human neutrophils (PMNs) during 2 hr incubation in RPMI-1640 was studied via flow cytometry and confocal microscopy. Flow cytometry was performed using an excitation wavelength of 488 nm, fluorescence being measured at 515–560 nm on 50,000 PMNs per sample. Confocal microscopy was performed on samples after further incubation with rhodamine-conjugated antiankyrin. Anti-CD44 resulted in an increase of 27–31% compared to control (P = 0.004) in the proportion of PMNs fluorescing, an increase of 17–24% (P = 0.001) in mean intracellular fluorescence per PMN, and an increase in total PMN fluorescence of 50–58% compared to control (P < 0.001). In contrast, anti-CD45 had little effect on phagocytosis. Colchicine (a microtubule-disrupting agent) enhanced, whereas cytochalasin-D (a microfilament inhibitor) inhibited bacterial phagocytosis; cytochalasin-D completely abrogated the effect of anti-CD44 on this PMN function. Hyaluronic acid augmented phagocytosis by an increment similar to that observed with anti-CD44. Two-color flow cytometry and confocal microscopy demonstrated that ankyrin always colocalized with ingested fluorescein isothiocyanate (FITC)-labeled bacteria. These data strongly suggest that CD44 is involved in bacterial phagocytosis, provide further evidence of CD44 receptor linkage to cytoskeletal elements in human leukocytes, and suggest that ankyrin has a significant role in the transport of phagosomes. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Flow cytometric detection of a two-step cell death induced by hyperthermia   总被引:1,自引:0,他引:1  
R M B?hmer 《Cytometry》1985,6(3):215-218
A human leukaemic cell line (REH) was subjected to various temperatures approximately greater than 42 degrees C for various time intervals; the cells were stained with a mixture of ethidium bromide and acridine orange, and red and green fluorescence were analysed by flow cytometry. Nontreated cells appeared as one cluster (V) in the biparameter histograms, but with time of heat treatment, two further discrete clusters (D1,D2) of cells appeared successively. They were distinguished by both the degree of red and green fluorescence. The kinetics of transit from one cluster to the other was dependent on temperature, the time lag between both steps becoming shorter with higher temperatures. It was shown previously that the same effect occurred during incubation with various cytostatic agents, and that only the D2 stage correlated with the stage of cell death monitored by the usual trypan blue exclusion test. Therefore the ethidium bromide technique seems to monitor an earlier stage of cell death. The decrease in the number of dye-excluding (V) cells during heat exposure occurred in two phases. After an initial decrease a plateau of number of dye-excluding cells was reached; the duration and level of this plateau depended on the temperature. The plateau was followed by a second phase where the remaining cells ceased to exclude the dye.  相似文献   

11.
BACKGROUND: Phagosomal pH is thought to play an important role in the antimicrobial activity of polymorphonuclear leukocytes (PMNs). In this study, we set up a method for a rapid and accurate measurement of phagosomal pH in PMNs with the use of Candida albicans doubly labeled with a pH-insensitive and a pH-sensitive probe and flow cytometry. METHODS: Heat-killed, serum-opsonized C. albicans were doubly labeled with fluorescein, a pH-sensitive probe, and rhodamine, a pH-insensitive probe, and incubated with human PMNs. Flow cytometric readings of PMN-associated Candida were then taken, and the intraphagosomal pH was calculated on the basis of the ratio of fluorescein:rhodamine fluorescence by using a calibration curve obtained after equilibration of phagosomal pH with different external pH values after addition of digitonin. RESULTS: A rapid rise in phagosomal pH, which reached pH 7.8, was observed 2 min after initiation of phagocytosis and progressively declined to pH 6.9 after 15 min. Such a rise was not observed in PMNs with defective microbicidal activity (deficient in nicotinamide adenine dinucleotide phosphate oxidase), where phagosomal pH dropped to pH 6.6, 2 min after phagocytosis. The abnormal initial acidification in PMNs deficient in nicotinamide adenine dinucleotide phosphate oxidase was prevented by using lysosomotropic weak bases or the vacuolar-type H(+) pump inhibitor concanamycin A. CONCLUSIONS: Phagosomal pH of PMNs can be easily and accurately measured by dual fluorescence flow cytometry. The method can be applied to assess phagosomal pH in PMNs with defective microbicidal activity and to monitor the outcome of pharmacologic interventions aimed at correcting its abnormalities.  相似文献   

12.
Abstract The interaction of fluorescein isothiocynate (FITC)-labelled cells of Helicobacter pylori with human polymorphonuclear leucocytes (PMNs) was studied. Two strains with surface haemagglutinins expressing different receptor specificity were used in order to decide if cell surface haemagglutinins of H. pylori may play a role in lectin-mediated binding to/uptake by phagocytes: (1) strain 17874 (NCTC 11637) which expresses sialic acid-specific haemagglutin; and (2) strain 17875 (NCTC 11638) which expresses a sialic acid-independent haemagglutinin. Cells of strain 17874 were poorly attached to/ingested by PMNs compared to cells of strain 17875. Pre-treatment of bacteria with fetuin or rabbit antibodies against partly purified sialic acid-specific haemagglutinin enhanced interaction of cells of strain 17874 with PMNs. The enhancement did not occur in the case of strain 17875. Phagocytosis of H. pylori 17874 bacteria was slightly increased by fresh human sera positive for anti- H. pylori antibodies. The results suggest that the sialic-acid-specific haemagglutinin complex of 17874 bacteria might disturb their uptake by human PMNs.  相似文献   

13.
Surfactant protein A (SP-A) is an innate immune molecule that binds foreign organisms that invade the lungs and targets them for phagocytic clearance by the resident pulmonary phagocyte, the alveolar macrophage (AM). We hypothesized that SP-A binds to and enhances macrophage uptake of other nonself particles, specifically apoptotic polymorphonuclear neutrophils (PMNs). PMNs are recruited into the lungs during inflammation, but as inflammation is resolved, PMNs undergo apoptosis and are phagocytosed by AMs. We determined that SP-A increases AM phagocytosis of apoptotic PMNs 280 +/- 62% above the no protein control value. The increase is dose dependent, and heat-treated SP-A still enhanced uptake, whereas deglycosylated SP-A had significantly diminished ability to enhance phagocytosis. Surfactant protein D also increased phagocytosis of apoptotic PMNs by approximately 125%. However, other proteins that are structurally homologous to SP-A, mannose-binding lectin and complement protein 1q, did not. SP-A enhances phagocytosis via an opsonization-dependent mechanism and binds apoptotic PMNs approximately 4-fold more than viable PMNs. Also, binding of SP-A to apoptotic PMNs does not appear to involve SP-A's lectin domain. These data suggest that the pulmonary collectins SP-A and SP-D facilitate the resolution of inflammation by accelerating apoptotic PMN clearance.  相似文献   

14.
Recent report from this lab has shown role of Rac2 in the translocation of inducible nitric oxide synthase (iNOS) to the phagosomal compartment of polymorphonuclear leukocytes (PMNs) following phagocytosis of beads. This study was undertaken to further assess the status and role of tetrahydrobiopterin (BH4), a redox-sensitive cofactor, L-arginine, and the substrate of nitric oxide synthase (NOS) in sustained nitric oxide (˙NO) production in killing of phagocytosed microbes (Escherichia coli) by human PMNs. Time-dependent study revealed consistent NO and reactive oxygen species (ROS) production in the PMNs following phagocytosis of beads. In addition, levels of L-arginine and BH4 were maintained or increased simultaneously to support the enzymatic activity of NOS in the bead activated PMNs. Moreover, translocation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits along with iNOS was reconfirmed in the isolated phagosomes. We demonstrate that increase in the level of NO was supported by L-arginine and BH4 to kill E. coli, by using PMNs from NOS2?/? mice, human PMNs treated with biopterin inhibitor, N-acetyl serotonin (NAS), or by suspending human PMNs in L-arginine deficient medium. Altogether, this study demonstrates that following phagocytosis, sustained. NO production in the PMNs was well-maintained by redox sensitive cofactor, BH4 and substrate, and L-arginine to enable microbial killing. Further results suggest NO production in the human PMNs, along with ROS and myeloperoxidase (MPO) is important to execute antimicrobial activity.  相似文献   

15.
The high incidence of both bacterial pneumonia and the adult respiratory distress syndrome (ARDS) associated with smoke inhalation injury (SII) may result, at least in part, from smoke-induced injury to the alveolar macrophage (AM). Specifically, we hypothesized that AM antimicrobial function, ability to phagocytose apoptotic PMNs, and capacity to prevent apoptosis in PMNs are impaired by smoke. To test these hypotheses, AMs were harvested by bronchoalveolar lavage from sheep before and after the animal was exposed to cotton smoke. The two populations of AMs were incubated with Pseudomonas aeruginosa (PSA) in vitro. Normal AMs (NAMs) phagocytosed a mean of 99 ± 11% of the PSA placed in their wells, whereas smoke-exposed AMs (SAMs) ingested only 60 ± 8%. NAMs killed 80 ± 8% of PSA ingested, whereas SAMs killed only 56 ± 16% (P < 0.05). When sheep PMNs, allowed to undergo apoptosis, were incubated with the two AM populations, 66 ± 3% of the NAMs and 40 ± 6% of the SAMs demonstrated phagocytosis of these apoptotic PMNs (P < 0.05). Fresh sheep PMNs were incubated in unconditioned media, NAM and SAM-conditioned media, and followed over 48 hr for the development of apoptosis and maintenance of viability. The NAM-conditioned media markedly prevented apoptosis and augmented PMN survival relative to the unconditioned and SAM-conditioned media (P < 0.05). The poor antimicrobial function known to be characteristic of apoptotic PMNs, together with the directly impaired antimicrobial function of AMs, may contribute to the infectious complications of Sll. If the PMNs recruited to the lung in Sll are not properly supported by the AMs following smoke injury, large numbers may undergo apoptosis. If not properly disposed of by these SAMs, the apoptotic PMNs could eventually lyse, releasing tissue toxins, resulting in escalation of lung injury and leading to ARDS. © 1995 Wiley-Liss, Inc.  相似文献   

16.
We have compared the oxidative response of alveolar macrophages (AM) during opsonin-dependent and independent phagocytosis by using multiparameter flow cytometry. The respiratory burst of AM during phagocytosis was quantitated by the intracellular oxidation of the nonfluorescent precursors dichlorofluorescin diacetate (DCFH) or hydroethidine (HE, a reduced precursor of ethidium) to their fluorescent (oxidized) counterparts. After loading freshly isolated normal hamster AM with DCFH or HE, red or green fluorescent beads, respectively, were added to the shaking cell suspensions. Ingestion of opsonized particles by AM caused a marked increase in oxidation of both DCFH and HE proportional to the number of beads ingested. In contrast, uptake of one to three unopsonized particles per cell led to inhibition of oxidative activity compared to control cells incubated without particles. AM ingesting four or more unopsonized particles showed some increase in oxidative metabolism, but far less than that with identical numbers of particles in opsonin-dependent ingestion. Similar results were obtained using fluorescent labeled staphylococcal bacteria. Using three-color flow cytometry to study cells ingesting both types of particles, cells first ingesting unopsonized beads were also found to have an inhibited oxidative response to subsequently ingested opsonized particles. The mitochondrial poison antimycin inhibited most of the intracellular oxidative response to either type of phagocytosis. The remaining antimycin-insensitive, membrane derived respiratory burst of AM was also substantially diminished after phagocytosis of unopsonized particles vs similar numbers of opsonized particles. The greatly increased mitochondrial respiration in AM during phagocytosis of opsonized particles may be related to bactericidal mechanisms. Killing of ingested Staphylococcus by AM was markedly impaired in the presence of antimycin. The results suggest that AM may ingest the numerous, unopsonized inert particles that are inhaled without generation of potentially toxic oxygen metabolites, while retaining the capacity to undergo a respiratory burst after ingesting opsonized particles and bacteria. The mechanism(s) for this distinct response may include generation of an inhibitor of intracellular oxidative metabolism.  相似文献   

17.
There has been a consensus that a large granular lymphocyte (LGL) population with natural killer (NK) function is nonadherent and nonphagocytic. However, a significant proportion of the nonadherent cells purified by the two-step depletion of adherent cells with a plastic surface and nylon wool columns engulfed Sta. aureus into their cytoplasm. These cells were morphologically identified as LGL in light and electron microscopies. Two-color immunofluorescence tests, furthermore, demonstrated that Leu-11+ LGL, Leu-11+7-, and Leu-11+7+, but not Leu-11-7+, phagocytosed Sta. aureus. Among the particles tested here, only Gram(+) bacteria were preferentially phagocytosed, whereas Gram(-) bacteria, other large-sized microbes (e.g., baker's yeast and Candida albicans), latex, silica, and carbonyl iron were not. LGL exhibited a substantial level of bactericidal activity against Sta. aureus, although the level was one third of that mediated by monocytes. When Gram(+) bacteria were incubated with nonadherent cells for 18 hr, significant amounts of interleukin 1 (IL 1)-like factors (or IL 1 itself) as well as interferon were detected in the supernatants. On the other hand, this incubation did not induce interleukin 2 (IL 2). The IL 1-like factor producer cells were demonstrated to be the low-density lymphocytes on Percoll separation and to have the Leu-11+ phenotype. The phagocytosis was suggested to be an important stimulus in producing IL 1-like factors from LGL. Thus, the treatment of cells with cytochalasin B, a microfilament disrupting agent, completely abrogated both phagocytosis and IL 1-like factor production. Some cell wall components of Gram(+) bacteria might be important to a recognition process of the phagocytosis, since the protoplasts of Sta. aureus, when prepared by the treatment of bacteria with lysostaphin, were no longer phagocytosed by LGL. The present results therefore identify an additional unique characteristic similar to, but not identical with, the myelomonocytic nature of Leu-11+ LGL.  相似文献   

18.
ABSTRACT: BACKGROUND: Pulmonary load of Legionella pneumophila in mice is normally determined by counting serial dilutions of bacterial colony forming units (CFU) on agar plates. This process is often tedious and time consuming. We describe a novel, rapid and versatile flow cytometric method that detects bacteria phagocytosed by neutrophils. FINDINGS: Mice were infected with L. pneumophila via intratracheal or intranasal administration. At various times after bacteria inoculation, mouse lungs were harvested and analysed concurrently for bacterial load by colony counting and flow cytometry analysis. The number of L. pneumophila-containing neutrophils correlated strongly with CFU obtained by bacteriological culture. CONCLUSIONS: This technique can be utilised to determine pulmonary bacterial load and may be used in conjunction with other flow cytometric based analyses of the resulting immune response.  相似文献   

19.
BACKGROUND: Apoptotic cells are recognized specifically by macrophages and are cleared rapidly by phagocytosis. However, the recognition mechanisms involved in the clearance of apoptotic cells by macrophages are still not fully understood. Therefore, new methods must be designed to better our understanding of the mechanisms of interaction between macrophages and apoptotic cells. 7-Aminoactinomycin D (7-AAD) is a fluorescent DNA-binding stain usually used as a single agent to detect apoptotic cells by flow cytometry. We propose the use of 7-AAD-stained apoptotic cells as targets for a new flow cytometry phagocytosis assay. METHODS: Murine T-cell lymphoma YAC-1 cells were treated with etoposide to induce apoptosis. Etoposide-treated YAC-1 target cells were stained subsequently with 7-AAD and then coincubated with resident peritoneal macrophages to allow phagocytosis. The samples were analyzed by flow cytometry. Macrophages that had phagocytosed 7-AAD-stained apoptotic cells were identified by their bright red fluorescence and the resulting values were expressed as the percentage of cells. RESULTS: The phagocytic cells appeared as a distinct population characterized by bright fluorescence, which could not be detected in the negative controls. The effects of a phagocytic enhancer (interferon-gamma [IFN-gamma]) or inhibitor (incubation at 4 degrees C) were assessed accurately with this flow cytometric method. CONCLUSIONS: We describe the use of 7-AAD in an assay that is easy and quick to perform. This flow cytometric-based assay allows the quantification of phagocytosis of apoptotic cells by macrophages.  相似文献   

20.
The ultrastructural localization of D-amino acid oxidase (DAO) was studied cytochemically by detecting sites of hydrogen peroxide production in human polymorphonuclear leukocytes (PMNs). Reaction product, which forms when cerous ions react with H2O2 to form an electron-dense precipitate, was demonstrated on the cell surface and within the phagosomes of phagocytically stimulated cells when D-amino acids were provided as substrate. Resting cells showed only slight activity. The competitive inhibitor D,L-2-hydroxybutyrate greatly reduced the D-amino acid-stimulated reaction while KCN did not. The cell surface reaction was abolished by nonpenetrating inhibitors of enzyme activity while that within the phagosome was not eliminated. Dense accumulations of reaction product were formed in cells which phagocytosed Staphylococcus aureus in the absence of exogenous substrate. No reaction product formed with Proteus vulgaris while an intermediate amount formed when Escherichia coli were phagocytosed. Variation in the amount of reaction product with the different bacteria correlated with the levels of D-amino acids in the bacterial cell walls which are available for the DAO of PMNs. An alternative approach utilizing ferricyanide as an electron acceptor was also used. This technique verified the results obtained with the cerium reaction, i.e., the DAO is located in the cell surface and is internalized during phagocytosis and is capable of H2O2 production within the phagosome. The present finding that DAO is localized on the cell surface further supports the concept that the plasma membrane is involved in peroxide formation in PMNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号