首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populations of Diaptomus leptopus (Copepoda: Calanoida) and other calanoid copepods exhibit varying degrees of sexual size dimorphism. We examined whether intraspecific or interspecific variation in dimorphism could be explained by allometry, and we examined the relationship between adult size attained and development rate to determine any relationship between the two. We compared the degree of sexual size dimorphism in D. leptopus and in other calanoid copepods inhabiting temporary and permanent habitats. Allometry did not explain variation in sexual size dimorphism within or among populations or among species. Permanence of habitat affected the degree of dimorphism: dimorphism was greater within and among species inhabiting temporary environments. Non-significant differences in development rate were found among populations and significant differences were found between sexes of D. leptopus when reared under identical laboratory conditions: males developed more rapidly than females but there was no general relationship between development rate and adult size. Potential adaptive hypotheses to explain the differences between populations inhabiting temporary and permanent habitats are discussed.  相似文献   

2.
Geographically structured variation in morphology is a common phenomenon in animals with environmental factors covarying with both latitude and biogeographic barriers having profound impacts on body size and shape. The Pacific blue-eye (Pseudomugil signifer) is a freshwater fish that lives along Australia’s east coast and occurs on either side of a terrestrial barrier, the Burdekin Gap. By quantifying the size and shape of males and females from 10 populations we found that Pacific blue-eyes are not sexually size dimorphism north of the Burdekin Gap whereas the degree of dimorphism was dependent upon latitude south of the barrier. Rensch’s rule was not supported as the degree of male-biased size dimorphism did not increase with increasing population mean body size. Body shape was related to body size and was sexually dimorphic south of the Burdekin Gap but not north of it. Our study represents a rare case of identifying how both body size and shape differ with respect to latitude and a major terrestrial biogeographic barrier and lends further support to the notion that P. signifer may comprise two species, or incipient species, that are separated by the Burdekin Gap.  相似文献   

3.

Dam constructions cause fundamental changes in the natural landscape, creating new ecological and evolutionary challenges for aquatic organisms. In some cases, such water impoundments have been related with morphological changes in organisms. Understanding how populations respond to rapid environmental changes imposed by dams is the first step to elucidate the consequences that disturbed habitats may have on species evolution. In this work, we analyzed shape and size variation in Bryconamericus iheringii Boulenger 1887 from the Chasqueiro stream basin, south of Brazil, which was recently dammed. We used linear measurements and geometric morphometrics to identify morphological differences among specimens from the reservoir (lentic habitat) compared to the habitat upstream and downstream of the dam (lotic habitats). We also tested for size- and shape-related sexual dimorphism to determine whether variations observed were the same for both sexes. We found that B. iheringii from the artificial reservoir were distinct in shape and size to those from their natural habitat in the stream. The size variation between environments was the same for both sexes, but the shape variation differed between males and females. Regarding the linear measurements, lotic populations were larger (greater body length, width, pectoral fin base length and caudal peduncle length), probably in response to increased swimming activity. Regarding body shape, we found that both sexes have a more fusiform body in lotic habitats than in the reservoir. In addition, females showed an altered mouth position that was distinct between these environments. This work indicates that the water reservoir seems to be an important factor influencing morphological variation in B. iheringii, a species with sexual shape dimorphism.

  相似文献   

4.
Variation in body size represents one of the crucial raw materials for evolution. However, at present, it is still being debated what is the main factor affecting body size or if the final body size is the consequence of several factors acting synergistically. To evaluate this, widespread species seem to be suitable models because the different populations occur along a geographical gradient and under contrasted climatic and environmental conditions. Here we describe the spatial pattern of variation in body size and sexual size dimorphism in the snouted treefrog Scinax fuscovarius (Anura, Hylidae) along a 10° range in latitude, 25° longitude, and 2000 m in altitude from Argentina, Brazil and Paraguay using an information‐theoretic approach to evaluate the support of the data for eight a priori hypotheses proposed in the literature to account for geographical body size, and three hypotheses for sexual size dimorphism variation. Body size of S. fuscovarius varied most dramatically with longitude and less so with latitude; frogs were largest in the northwestern populations. Body size was positively related with precipitation seasonality, and negatively with annual precipitation. Furthermore, the degree of sexual size dimorphism was greatest in the western populations with less annual precipitation, as the increase in body size was stronger for females. Our results on body size variation are consistent with two ecogeographical hypotheses, the starvation resistance and the water availability hypotheses, while our results on sexual size dimorphism in S. fuscovarius supports the differential‐plasticity hypothesis but the inverse to Rensch's rule and the parental investment hypothesis. Due to the weak association between environmental variables and body size and sexual size dimorphism variation, we stress that there are other factors, mainly those related to the life history, driving the geographical variation of S. fuscovarius.  相似文献   

5.
Floral size dimorphism, pollination, and genetic variation of Alpinia nieuwenhuizii (Zingiberaceae), a flexitylous ginger, were studied. This study revealed that floral size differed among habitats (i.e., roadsides/riversides vs. forest floors). The effective pollinators of small-flowered populations of the species on a forest floor were different from those of large-flowered populations along roadsides/riversides. Using inter-simple sequence repeat (ISSR) PCR, considerable genetic differentiation was detected between small- and large-flowered populations. These results indicate that reproductive isolation in A. nieuwenhuizii owing to the differentiation of pollen vectors between two floral size morphs may lead to genetic differentiation between the two morphs.  相似文献   

6.
Lophyra flexuosa, a eurytopic tiger beetle characterized by long phenological activity, wide geographic and altitudinal distribution, and occurring in the highest number of habitats among all Cicindelidae known from North Africa, was chosen to study its geographic variation in morphology and sexual dimorphism. Here, we found significant sexual dimorphism exhibited in larger body size of females and longer mandibles in males, which can be explained by different roles of particular sexes in courtship. Moreover, we recorded significant differences in body sizes between western and eastern Maghreb populations which could suggest genetic isolation between these populations. As the species is related to habitats placed close to the water reservoirs, which in the desert countries are under significant human pressure (including climate change), we expect a reduction of habitat occupied by this taxon. Therefore, the geographic morphological variability that we observe today in the tiger beetle Lophyra flexuosa in the future could lead to speciation.  相似文献   

7.
Stag beetles usually have great intraspecific variation in their body sizes, which can be affected by both environmental and genetic factors. However, direct studies on wild-caught specimens may be insufficient to clarify such variation due to the confounding effects of ecological variance in natural habitats. To evaluate this, the stag beetle Aegus chelifer chelifer MacLeay, 1819 was collected from within two localities (Bangkok metropolitan area and Chanthaburi province) in Thailand and then reared under the same condition to investigate the differences in morphological characteristics between the wild-caught and captive-bred beetles and between the two geographical populations. Narrow-sense heritabilities (h2) of the observed traits in adults were not significant. Variation in the body size of captive-bred specimens was less than in the wild-caught specimens and the overlap of the body size variation between the two populations was lower in the captive-bred beetles. The Chanthaburi population had a significantly larger body size than the Bangkok population. Allometric slopes and intercepts were also significantly different between the two geographic populations. Captive-bred larvae showed similar relative growth rates, but male larvae from the Chanthaburi population had a longer feeding period, and so a larger adult body size, than those from the Bangkok population. The differences between the two populations could be explained by adaptation through larval performances and body size in order to respond to their habitats.  相似文献   

8.
In extreme cases leaves in male plants of the dioecious genus Leucadendron (Proteaceae) are up to an order of magnitude smaller than female leaves. This secondary sexual dimorphism (SSD) in leaf size has previously been suggested to be due to intra-male sexual selection, leading to an increase in male allocation to reproduction in dimorphic species. After critically evaluating previous data provided to support this hypothesis, I suggest on both theoretical grounds and on re-analysis that this argument is unlikely and unsupported. Leaf size dimorphism could theoretically evolve directly due to disruptive ecological selection between genders, leading to niche dimorphism either within or between habitats. I test this ecological causation hypothesis by providing data on specific leaf area (sla) and water use efficiency (δ 13C) of leaves from males and females of several Leucadendron species. Results confirm the expectation of minimal gender differences. I argue that leaf dimorphism is a consequence of selection on flower size and architecture.  相似文献   

9.
Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence.  相似文献   

10.
Sexual dimorphism in body size (sexual size dimorphism) is common in many species. The sources of selection that generate the independent evolution of adult male and female size have been investigated extensively by evolutionary biologists, but how and when females and males grow apart during ontogeny is poorly understood. Here we use the hawkmoth, Manduca sexta, to examine when sexual size dimorphism arises by measuring body mass every day during development. We further investigated whether environmental variables influence the ontogeny of sexual size dimorphism by raising moths on three different diet qualities (poor, medium and high). We found that size dimorphism arose during early larval development on the highest quality food treatment but it arose late in larval development when raised on the medium quality food. This female-biased dimorphism (females larger) increased substantially from the pupal-to-adult stage in both treatments, a pattern that appears to be common in Lepidopterans. Although dimorphism appeared in a few stages when individuals were raised on the poorest quality diet, it did not persist such that male and female adults were the same size. This demonstrates that the environmental conditions that insects are raised in can affect the growth trajectories of males and females differently and thus when dimorphism arises or disappears during development. We conclude that the development of sexual size dimorphism in M. sexta occurs during larval development and continues to accumulate during the pupal/adult stages, and that environmental variables such as diet quality can influence patterns of dimorphism in adults.  相似文献   

11.
The Lophiodontidae is an emblematic and well-documented Eocene family of perissodactyls from Western Europe. However, after more than a century and a half of studies, lophiodontids still display a complex systematics associated with blurry intraspecific variation and a poorly known early radiation. The locality of La Borie, located near the city of Toulouse, France, has yielded numerous remains of Eolophiodon laboriense. This abundance of remains allows for the first time the study of the intraspecific variation of a basal lophiodontid. The variation has been investigated for dental and cranio-mandibular characters, notably dental polymorphism, size variation and sexual dimorphism. The intraspecific variation of E. laboriense is high with more than 20 polymorphic characters of the dentition, including many additional crests and conules. This dental polymorphism is similar to the one observed in the Bartonian lophiodontid Lophiodon lautricense. E. laboriense also displays an important degree of sexual dimorphism, with male specimens having broader and longer mandibles with larger canines than females. Despite this high intraspecific variation, the low size variation of teeth and the consistency of diagnostic characters strengthen the validity of the genus Eolophiodon and does not impact the previous lophiodontid phylogeny.  相似文献   

12.
The alien invasive American mink Neovison vison is fully established in the low species richness and competitor-free environment of Iceland. This study documents the diversity as well as seasonal and sexual variation in the diet of mink in Iceland based on stomach contents. Seasonal changes mainly reflected variation in abundance of migratory birds and wood mice Apodemus sylvaticus. In comparison with mink elsewhere in similar habitats, the mink in Iceland consumed more fish and birds and fewer mammals, which is in accordance with local availability. This reinforces evidence of opportunistic foraging. Females generally ate more fish and fewer birds than males and this might be explained by their smaller body size and possible limitation in catching larger birds. Mink in coastal habitats showed greater sexual differences in diet than mink in riparian habitats, probably reflecting less prey diversity in riparian habitats than coastal ones. This study is an input towards explaining the ecological consequences of sexual size dimorphism and supports the hypothesis that generalist species might be successful invaders due to their capability in utilising new and diverse resources. The mink in Iceland can be regarded as a model for a small-bodied semi-aquatic carnivore away from the confounding effects of inter-specific competition.  相似文献   

13.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

14.
Several characteristics of habitats of herbivores and their food-plant communities, such as plant-species composition and plant quality, influence population genetics of both herbivores and their host plants. We investigated how different ecological and geographic factors affect genetic variation in and differentiation of 23 populations of the oligophagous seed predator Lygaeus equestris (Heteroptera) in southwestern Finland and in eastern Sweden. We tested whether genetic differentiation of the L. equestris populations was related to the similarity of vegetation, and whether there was more within-population genetic variation in habitats with a high number of plant species or in those with a large population of the primary food plant, Vincetoxicum hirundinaria. We also tested whether genetic differentiation of the populations was related to the geographic distance, and whether location of the populations on islands or on mainland, island size, or population size affected within-population genetic variation. Pairwise FST ranged from 0 to 0.1 indicating low to moderate genetic differentiation of populations. Differentiation increased with geographic distance between the populations, but was not related to the similarity of vegetation between the habitats. Genetic variation within the L. equestris populations did not increase with the population size of the primary food plant. However, the more diverse the plant community the higher was the level of genetic variation within the L. equestris population. Furthermore, the level of genetic variation did not vary significantly between island and mainland populations. The effect of the population size on within-population genetic variation was related to island size. Usually small populations are susceptible to loss of genetic variation, but small L. equestris populations on large islands seemed to maintain a relatively high level of within-population genetic variation. Our findings suggest that, in addition to geographic and species-specific ecological factors, the plant community affects population genetic structure of oligophagous herbivores.  相似文献   

15.
Among extant hominoids degrees of sexual dimorphism and combined-sex coefficients of variation of canine teeth dimensions are highly correlated. Based on this relationship and coefficients of variation of four species of the genus Australopithecus, we predict degrees of canine dimorphism for these extinct hominids. The estimates show that A. afarensis is as dimorphic as the pygmy chimpanzee, A. boisei slightly less dimorphic than the pygmy chimpanzee, A. robustus slightly more dimorphic than the lar gibbon, while A. africanus overiaps with the lar gibbon as well as a modern human sample. These estimates represent degrees of canine dimorphism substantially lower than results based upon prior sexing of individual specimens. The relationship between canine dimorphism and body weight dimorphism is also analyzed. All four species of Australopithecus are considerably less dimorphic in canine size for their body weight dimorphism than expected. This dissociation of canine size dimorphism and body weight dimorphism is shared with modern humans, and thus represents a unique hominid trait. We interpret the moderate to strong body weight dimorphism in australopithecines as the result of intra- and intersexual selection typical of a polygynous mating structure, while the rather mild canine dimorphism is interpreted in terms of the “developmental crowding” model for reduction in canine size.  相似文献   

16.
Stillwell RC  Fox CW 《Oecologia》2007,153(2):273-280
Sexual size dimorphism is widespread in animals but varies considerably among species and among populations within species. Much of this variation is assumed to be due to variance in selection on males versus females. However, environmental variables could affect the development of females and males differently, generating variation in dimorphism. Here we use a factorial experimental design to simultaneously examine the effects of rearing host and temperature on sexual dimorphism of the seed beetle, Callosobruchus maculatus. We found that the sexes differed in phenotypic plasticity of body size in response to rearing temperature but not rearing host, creating substantial temperature-induced variation in sexual dimorphism; females were larger than males at all temperatures, but the degree of this dimorphism was smallest at the lowest temperature. This change in dimorphism was due to a gender difference in the effect of temperature on growth rate and not due to sexual differences in plasticity of development time. Furthermore, the sex ratio (proportion males) decreased with decreasing temperature and became female-biased at the lowest temperature. This suggests that the temperature-induced change in dimorphism is potentially due to a change in non-random larval mortality of males versus females. This most important implication of this study is that rearing temperature can generate considerable intraspecific variation in the degree of sexual size dimorphism, though most studies assume that dimorphism varies little within species. Future studies should focus on whether sexual differences in phenotypic plasticity of body size are a consequence of adaptive canalization of one sex against environmental variation in temperature or whether they simply reflect a consequence of non-adaptive developmental differences between males and females.  相似文献   

17.
Geographic variation and interspecific differentiation in body size (body length) were analyzed for 15 species of the carabid subgenus Ohomopterus (genus Carabus; Coleoptera, Carabidae) in Japan. Local species assemblages of this subgenus consist of up to 5 species of different size classes. These beetles exhibited sexual dimorphism in body size where females are larger than males, except Carabus uenoi, in which the male and female sizes were equivalent, possibly because of the exaggerated male genitalia. In 9 of 15 species, there was a positive correlation between mean body size and annual mean temperature of habitat, representing the converse of Bergmann's rule. However, in some cases this correlation does not hold over the range of a species because of regional differences. When allopatric and sympatric populations were compared, allopatric populations of Carabus albrechti and C. japonicus had larger bodies than sympatric populations. These intraspecific differences may have resulted from character displacement. In each local assemblage with 2 or more species, there was little interspecific overlap of body size, although the body size ratio between two species with adjacent body sizes seldom showed strict constancy. The mean size ratio between 2 adjacent species in an assemblage was reduced with the number of species, whereas the size ratio of the largest to smallest species in an assemblage increased with the number of species (i.e., the expansion of body size range). These results indicate that the body size of Ohomopterus species may have evolved in response to both climatic conditions and interspecific interactions. Because each species or species group represents the same size class over the distribution range and similar-sized species are parapatric or allopatric, the interspecific segregation in body size in local assemblages may have resulted mainly from a size assortment process during colonization. Received: June 8, 2000 / Accepted: October 10, 2000  相似文献   

18.
It is contentious whether size variation among mammalian teeth is heterogeneous or homogeneous, whether the coefficient of variation is reliable, and whether the standard deviation of log-transformed data and the residual of standard deviation on mean variable size are useful replacements for the coefficient of variation. Most studies of tooth size variation have been on mammals with complex-crowned teeth, with relatively little attention paid to taxa with simple-crowned teeth, such as Pinnipedia. To fill this gap in knowledge and to resolve the existing controversies, we explored the variation of linear size variables (length and width) for all teeth from complete permanent dentitions of four pinniped species, two phocids (Histriophoca fasciata, Phoca largha) and two otariids (Callorhinus ursinus, Eumetopias jubatus). Size variation among these teeth was mostly heterogeneous both along the toothrow and among species. The incisors, canines, and mesial and distal postcanines were often relatively highly variable. The levels of overall dental size variation ranged from relatively low as in land carnivorans (Phoca largha and both otariids) to high (Histriophoca fasciata). Sexual size dimorphism varied among teeth and among species, with teeth being, on average, larger in males than in females. This dimorphism was more pronounced, and the canines were larger and more dimorphic relative to other teeth in the otariids than in the phocids. The coefficient of variation quantified variation reliably in most cases. The standard deviation of log-transformed data was redundant with the coefficient of variation. The residual of standard deviation on mean variable size was inaccurate when size variation was considerably heterogeneous among the compared variables, and was incomparable between species and between sexes. The existing hypotheses invoking developmental fields, occlusal complexity, and the relative timing of tooth formation and sexually dimorphic hormonal activity do not adequately explain the differential size variation along the pinniped toothrow.  相似文献   

19.
匡先钜  戈峰  薛芳森 《昆虫学报》2015,58(3):351-360
体型是昆虫基本的形态特性,它会影响到昆虫几乎所有的生理和生活史特性。同种昆虫不同地理种群在体型上常表现出明显的渐变,导致这些渐变的环境因素包括温度、湿度、光照、寄主植物、种群密度等,并且多种环境因素也会对昆虫种群内个体体型产生影响。雌雄个体的体型存在差异,称性体型二型性。性体型二型性也显示了地理差异。这些差异形成的途径已经得到详细的分析,其形成机制导致多个假说的提出,这些假说又在多种昆虫中得到验证。本文从同一种昆虫不同种群间、同一种群内、雌雄虫个体间3个水平,对种内昆虫体型变异的方式,影响昆虫种群间体型变异和种群内昆虫体型的变异的环境因素,以及昆虫性体型二型性及其地理变异的现象等方面的研究进行了综述,并对未来的相关研究提供了建议。  相似文献   

20.
Assessing variation in breeding performance in relation to habitat characteristics may provide insights into predicting the consequences of land‐use change on species ecology and population dynamics. We compared four Marsh Harrier Circus aeruginosus populations subject to similar environmental conditions, but which differed in habitat composition, ranging from natural habitats to intensively cultivated areas. Using a 6‐year dataset, we characterized breeding habitat and diet in these four study sites, and analysed breeding performance in relation to this gradient of land‐use intensification. There was minimal variation in breeding performance between study years but consistent variation between study sites. Unexpectedly, Marsh Harriers breeding in intensively cultivated habitats had higher reproductive success than those breeding in more natural habitats, which, however, hosted higher breeding densities, so overall net population productivity (fledglings per unit area) was similar across sites. This resulted from combined effects of density‐dependence and different predation rates between study sites. The colonization of intensive farmland habitats may not necessarily impact negatively on population sustainability when breeding success and population density are traded against each other. However, our findings should not mask longer‐term conservation issues for populations breeding in these intensively managed areas, and further studies should assess potential long‐term negative effects of occupancy of human‐altered habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号