首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variation in the magnitude of inbreeding depression (ID) among families may have important consequences for mating system evolution. Experimental studies have shown that such variation is a common feature of natural plant populations. Unfortunately, the genetic and evolutionary significance of family level estimates remains obscure. Almost any kind of genetic variation will generate differences in ID among families, and as a consequence, a non-zero variance in family level ID is not sufficient to distinguish genetic architectures with wholly different implications for mating system evolution. Quantitative genetic methods provide a means to extract more information from ID experiments. Estimates of quantitative genetic variance components directly inform questions about the genetic basis of ID and should ultimately allow tests of alternative theories of mating system evolution.  相似文献   

2.
Natural populations inhabiting the same environment often independently evolve the same phenotype. Is this replicated evolution a result of genetic constraints imposed by patterns of genetic covariation? We looked for associations between directions of morphological divergence and the orientation of the genetic variance-covariance matrix (G) by using an experimental system of morphological evolution in two allopatric nonsister species of rainbow fish. Replicate populations of both Melanotaenia eachamensis and Melanotaenia duboulayi have independently adapted to lake versus stream hydrodynamic environments. The major axis of divergence (z) among all eight study populations was closely associated with the direction of greatest genetic variance (gmax), suggesting directional genetic constraint on evolution. However, the direction of hydrodynamic adaptation was strongly associated with vectors of G describing relatively small proportions of the total genetic variance, and was only weakly associated with gmax. In contrast, divergence between replicate populations within each habitat was approximately proportional to the level of genetic variance, a result consistent with theoretical predictions for neutral phenotypic divergence. Divergence between the two species was also primarily along major eigenvectors of G. Our results therefore suggest that hydrodynamic adaptation in rainbow fish was not directionally constrained by the dominant eigenvector of G. Without partitioning divergence as a consequence of the adaptation of interest (here, hydrodynamic adaptation) from divergence due to other processes, empirical studies are likely to overestimate the potential for the major eigenvectors of G to directionally constrain adaptive evolution.  相似文献   

3.
4.
Plant breeders would like to predict which biparental populations will have the largest genetic variance. If the population genetic variance could be predicted using coefficient of parentage or genetic distance estimates based on molecular marker data, breeders could choose parents that produced segregating populations with a large genetic variance. Three biparental soybean {Glycine max (L.) Merr.} populations were developed by crossing parents that were closely related, based on pedigree relationships. Three additional biparental populations were developed by crossing parents that were assumed to be unrelated. The genetic variance of each population was estimated for yield, lodging, physiological maturity, and plant height. Coefficient of parentage was calculated for each pair of parents used to develop the segregating populations. Genetic distance was determined, based on the number of random amplified polymorphic markers (RAPD) that were polymorphic for each pair of parents. Genetic distance was not associated with the coefficient of parentage or the magnitude of the genetic variance. The genetic variance pooled across the three closely related populations was smaller than the genetic variance pooled across the three populations derived from crossing unrelated parents for all four traits that were evaluated. Received: 24 April 1996 / Accepted: 17 May 1996  相似文献   

5.
The microevolutionary process of adaptive phenotypic differentiation of quantitative traits between populations or closely‐related taxa depends on the response of populations to the action of natural selection. However, this response can be constrained by the structure of the matrix of additive genetic variance and covariance between traits in each population ( G matrix). In the present study, we obtained additive genetic variance and narrow sense heritability for 25 floral and vegetative traits of three subspecies of Aquilegia vulgaris, and one subspecies of Aquilegia pyrenaica through a common garden crossing experiment. For two vegetative and one floral trait, we also obtained the G matrix and genetic correlations between traits in each subspecies. The amount of genetic variation available in wild populations is not responsible for the larger differentiation of vegetative than floral traits found in this group of columbines. However, the low heritability of some traits constrained their evolution because phenotypic variability among taxa was larger for traits with larger heritability. We confirmed that the process of diversification of the studied taxa involved shifts in the G matrix, mainly determined by changes in the genetic covariance between floral and vegetative traits, probably caused by linkage disequilibrium in narrow endemic taxa. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 252–261.  相似文献   

6.
Inferences about the role of epigenetics in plant ecology and evolution are mostly based on studies of cultivated or model plants conducted in artificial environments. Insights from natural populations, however, are essential to evaluate the possible consequences of epigenetic processes in biologically realistic scenarios with genetically and phenotypically heterogeneous populations. Here, we explore associations across individuals between DNA methylation transmissibility (proportion of methylation‐sensitive loci whose methylation status persists unchanged after male gametogenesis), genetic characteristics (assessed with AFLP markers), seed size variability (within‐plant seed mass variance), and realized maternal fecundity (number of recently recruited seedlings), in three populations of the perennial herb Helleborus foetidus along a natural ecological gradient in southeastern Spain. Plants (sporophytes) differed in the fidelity with which DNA methylation was transmitted to descendant pollen (gametophytes). This variation in methylation transmissibility was associated with genetic differences. Four AFLP loci were significantly associated with transmissibility and accounted collectively for ~40% of its sample‐wide variance. Within‐plant variance in seed mass was inversely related to individual transmissibility. The number of seedlings recruited by individual plants was significantly associated with transmissibility. The sign of the relationship varied between populations, which points to environment‐specific, divergent phenotypic selection on epigenetic transmissibility. Results support the view that epigenetic transmissibility is itself a phenotypic trait whose evolution may be driven by natural selection, and suggest that in natural populations epigenetic and genetic variation are two intertwined, rather than independent, evolutionary factors.  相似文献   

7.
Accurately estimating genetic variance components is important for studying evolution in the wild. Empirical work on domesticated and wild outbred populations suggests that dominance genetic variance represents a substantial part of genetic variance, and theoretical work predicts that ignoring dominance can inflate estimates of additive genetic variance. Whether this issue is pervasive in natural systems is unknown, because we lack estimates of dominance variance in wild populations obtained in situ. Here, we estimate dominance and additive genetic variance, maternal variance, and other sources of nongenetic variance in eight traits measured in over 9000 wild nestlings linked through a genetically resolved pedigree. We find that dominance variance, when estimable, does not statistically differ from zero and represents a modest amount (2-36%) of genetic variance. Simulations show that (1) inferences of all variance components for an average trait are unbiased; (2) the power to detect dominance variance is low; (3) ignoring dominance can mildly inflate additive genetic variance and heritability estimates but such inflation becomes substantial when maternal effects are also ignored. These findings hence suggest that dominance is a small source of phenotypic variance in the wild and highlight the importance of proper model construction for accurately estimating evolutionary potential.  相似文献   

8.
BACKGROUND AND AIMS: Dynamic management (DM) of genetic resources aims at maintaining genetic variability between different populations evolving under natural selection in contrasting environments. In 1984, this strategy was applied in a pilot experiment on wheat (Triticum aestivum). Spatio-temporal evolution of earliness and its components (partial vernalization sensitivity, daylength sensitivity and earliness per se that determines flowering time independently of environmental stimuli) was investigated in this multisite and long-term experiment. METHODS: Heading time of six populations from the tenth generation was evaluated under different vernalization and photoperiodic conditions. KEY RESULTS: Although temporal evolution during ten generations was not significant, populations of generation 10 were genetically differentiated according to a north-south latitudinal trend for two components out of three: partial vernalization sensitivity and narrow-sense earliness. CONCLUSIONS: It is concluded that local climatic conditions greatly influenced the evolution of population earliness, thus being a major factor of differentiation in the DM system. Accordingly, a substantial proportion (approximately 25 %) of genetic variance was distributed among populations, suggesting that diversity was on average conserved during evolution but was differently distributed by natural selection (and possibly drift). Earliness is a complex trait and each genetic factor is controlled by multiple homeoalleles; the next step will be to look for spatial divergence in allele frequencies.  相似文献   

9.
The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.  相似文献   

10.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

11.
Two questions were addressed: (1) What is the genetic variance-covariance structure of a suite of four female life history traits in D. melanogaster? and (2) Does the genetic architecture of these traits differ among populations? Three populations of D. melanogaster were studied. Genetic variances and covariances were estimated by sib analysis three times for each population: immediately upon establishment of populations in the laboratory, and subsequently after approximately 6 months and 2 years of laboratory culture. Entire genetic variance-covariance matrices, as well as their individual components, were compared between populations by means of likelihood ratio tests. All traits studied were significantly heritable in at least one-half of estimates. Despite large sample sizes, additive genetic covariances were for the most part not statistically significant, and only two significant negative covariance estimates were obtained throughout the experiments. Therefore, these experiments provide little support for evolutionary life history theories that are based on negative genetic correlations among life history components. Neither do they support the idea that genetic variance for fitness components is maintained by trade-offs. Evidence suggests that the G matrix of one population was initially different from those of the other two populations. Those differences disappeared after 2 years of laboratory culture. At the level of individual (co)variance components, there were relatively few differences among populations, and the overall impression was that the three populations had generally similar genetic architectures for the traits studied.  相似文献   

12.
Gordon IL 《Heredity》2003,91(1):85-89
Natural gene flow is often localised because of gamete dispersal limitations, and the quantity and structure of the genotypic variance in such populations is a key to predicting the advance from selection, in both evolution and artificial breeding programmes. Earlier derivations of this variance have shown that the total dominance variance may increase with inbreeding despite the fact that heterozygosity is decreasing. This anomaly has been corrected following the de novo biometrical derivation presented in this paper. The whole population also subdivides into descendant lineages that differ in allele frequencies and means because of the dispersion caused by genetic drift and continuing localisation of gamodemes. The paper defines for the first time the among-line and within-line partitions of the dominance variance; and corrects anomalies in the total genic (additive genetic) variance, and its underlying inbred average alle-substitution effect. The revisions also clarify the connections between the Fisher-Falconer, Mather-Hayman, and Wright approaches to defining the inbred genotypic variance. Relationships are discussed between the population dispersion structure and genetic efficiency in selection.  相似文献   

13.
The role of epistasis in evolution and speciation has remained controversial. We use a new parameterization of physiological epistasis to examine the effects of epistasis on levels of additive genetic variance during a population bottleneck. We found that all forms of epistasis increase average additive genetic variance in finite populations derived from initial populations with intermediate allele frequencies. Average additive variance continues to increase over many generations, especially at larger population sizes (N = 32 to 64). Additive-by-additive epistasis is the most potent source of additive genetic variance in this situation, whereas dominance-by-dominance epistasis contributes smaller amounts of additive genetic variance. With additive-by-dominance epistasis, additive genetic variance decreases at a relatively high rate immediately after a population bottleneck, rebounding to higher levels after several generations. Empirical examples of epistasis for murine adult body weight based on measured genotypes are provided illustrating the varying effects of epistasis on additive genetic variance during population bottlenecks.  相似文献   

14.
Thermal performance curves (TPCs) provide a powerful framework for studying the evolution of continuous reaction norms and for testing hypotheses of thermal adaptation. Although featured heavily in comparative studies, the framework has been comparatively underutilized for quantitative genetic tests of thermal adaptation. We assayed the distribution of genetic (co)variance for TPC (locomotor activity) within and among three natural populations of Drosophila serrata and performed replicated tests of two hypotheses of thermal adaptation--that 'hotter is better' and that a generalist-specialist trade-off underpins the evolution of thermal sensitivity. We detected significant genetic variance within, and divergence among, populations. The 'hotter is better' hypothesis was not supported as the genetic correlations between optimal temperature (T(opt)) and maximum performance (z(max)) were consistently negative. A pattern of variation consistent with a generalist-specialist trade-off was detected within populations and divergence among populations indicated that performance curves were narrower and had higher optimal temperatures in the warmer, but less variable tropical population.  相似文献   

15.
For neutral, additive quantitative characters, the amount of additive genetic variance within and among populations is predictable from Wright's FST, the effective population size and the mutational variance. The structure of quantitative genetic variance in a subdivided metapopulation can be predicted from results from coalescent theory, thereby allowing single-locus results to predict quantitative genetic processes. The expected total amount of additive genetic variance in a metapopulation of diploid individual is given by 2Ne sigma m2 (1 + FST), where FST is Wright's among-population fixation index, Ne is the eigenvalue effective size of the metapopulation, and sigma m2 is the mutational variance. The expected additive genetic variance within populations is given by 2Ne sigma e2(1-FST), and the variance among demes is given by 4FSTNe sigma m2. These results are general with respect to the types of population structure involved. Furthermore, the dimensionless measure of the quantitative genetic variance among populations, QST, is shown to be generally equal to FST for the neutral additive model. Thus, for all population structures, a value of QST greater than FST for neutral loci is evidence for spatially divergent evolution by natural selection.  相似文献   

16.
The additive genetic variance–covariance matrix (G) summarizes the multivariate genetic relationships among a set of traits. The geometry of G describes the distribution of multivariate genetic variance, and generates genetic constraints that bias the direction of evolution. Determining if and how the multivariate genetic variance evolves has been limited by a number of analytical challenges in comparing G-matrices. Current methods for the comparison of G typically share several drawbacks: metrics that lack a direct relationship to evolutionary theory, the inability to be applied in conjunction with complex experimental designs, difficulties with determining statistical confidence in inferred differences and an inherently pair-wise focus. Here, we present a cohesive and general analytical framework for the comparative analysis of G that addresses these issues, and that incorporates and extends current methods with a strong geometrical basis. We describe the application of random skewers, common subspace analysis, the 4th-order genetic covariance tensor and the decomposition of the multivariate breeders equation, all within a Bayesian framework. We illustrate these methods using data from an artificial selection experiment on eight traits in Drosophila serrata, where a multi-generational pedigree was available to estimate G in each of six populations. One method, the tensor, elegantly captures all of the variation in genetic variance among populations, and allows the identification of the trait combinations that differ most in genetic variance. The tensor approach is likely to be the most generally applicable method to the comparison of G-matrices from any sampling or experimental design.  相似文献   

17.
Variation is the raw material for evolution. Evolutionary potential is determined by the amount of genetic variation, but evolution can also alter the visibility of genetic variation to natural selection. Fluctuating environments are suggested to maintain genetic variation but they can also affect environmental variance, and thus, the visibility of genetic variation to natural selection. However, experimental studies testing these ideas are relatively scarce. In order to determine differences in evolutionary potential we quantified variance attributable to population, genotype and environment for populations of the bacterium Serratia marcescens. These populations had been experimentally evolved in constant and two fluctuating environments. We found that strains that evolved in fluctuating environments exhibited larger environmental variation suggesting that adaptation to fluctuations has decreased the visibility of genetic variation to selection.  相似文献   

18.
Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, ΔVarHD, also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. ΔVarHD is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction.  相似文献   

19.
In complex environments that contain several substitutable resources, lineages may become specialized to consume only one or a few of them. Here we investigate the importance of environmental complexity in determining the evolution of niche width over approximately 900 generations in a chemically defined experimental system. We propagated 120 replicate lines of the bacterium Pseudomonas fluorescens in environments of different complexity by using between one and eight carbon substrates in each environment. Genotypes from populations selected in complex environments evolved greater mean and variance in fitness than those from populations selected in simple environments. Thus, lineages were able to adapt to several substrates simultaneously without any appreciable loss of function with respect to other substrates present in the media. There was greater genetic and genotype-by-environment interaction variance for fitness within populations selected in complex environments. It is likely that genetic variance in populations grown on complex media was maintained because the identity of the fittest genotype varied among carbon substrates. Our results suggest that evolution in complex environments will result neither in narrow specialists nor in complete generalists but instead in overlapping imperfect generalists, each of which has become adapted to a certain range of substrates but not to all.  相似文献   

20.
Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p → 1, p(1 − p) → 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy is yet to be determined. It is likely that only a case-by-case analysis will provide the answers. Despite the difficulties that complex interactions cause for evolution in Mendelian populations, such populations nevertheless evolve very well. Longlasting species must have evolved mechanisms for coping with such problems. Since such difficulties do not arise in asexual populations, a comparison of epistatic patterns in closely related sexual and asexual species might provide some important insights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号