首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amino acid sequence of crayfish troponin I   总被引:2,自引:0,他引:2  
Troponin I is the actomyosin ATPase inhibitory subunit present in the thin filament regulatory complex. The complete amino acid sequence of crayfish tail muscle troponin I has been determined. The protein is composed of 201 amino acid residues and has a molecular weight of 23,547. The N terminus is blocked, likely by an acetyl group. Crayfish troponin I shows a rather low (20-25%) sequence identity with vertebrate troponin Is as compared to the 60-82% identity within the vertebrate phylum. Similar to vertebrate cardiac troponin I, crayfish troponin I contains a 30-residue-long N-terminal extension. In crayfish troponin I, this segment bears significant sequence homology with the heavy or light chains of particular myosins. The actin-binding domain of crayfish troponin I, which displays 57% sequence homology with vertebrate troponin Is, possesses 2 unusual trimethyllysine residues. The consensus sequence of this domain in five troponin Is is as follows: D-L-R-G-K-F-X-R*-P-X-L-R*-R*-V, where R+ stands for Arg/Lys, R* for Arg/trimethyllysine, and X for any amino acid residue. Troponin I possesses two Ca2+-dependent interactive sites for troponin C; one partly overlaps with the actin binding domain and is highly conserved, and the other, corresponding to the 30-residue-long segment following the N-terminal extension in vertebrate cardiac and crayfish troponin I, is poorly conserved in the different troponin Is. Troponin I also interacts with troponin T. The consensus sequence for the interacting site on troponin I is as follows: h-D- -X-D- -R+-Y-D-h-E-h, where h stands for a hydrophobic residue, D- for Asp/Glu, R+ for Arg/Lys, and X for any residue. The five troponin Is further possess one more 15-residue-long segment of high sequence identity near the C terminus. Its evolutionary conservation suggests that this domain is involved in protein-protein interaction.  相似文献   

2.
Amino acid sequence of rabbit cardiac troponin T   总被引:2,自引:0,他引:2  
The complete amino acid sequence of the major isoform of rabbit cardiac troponin T was determined by the application of manual and automated Edman degradation procedures to fragments generated by suitable chemical or proteolytic cleavages. The protein has a polypeptide chain length of 276 amino acid residues, a Mr of 32,881, is negatively charged at neutral pH, and must be encoded by a different structural gene than rabbit skeletal troponin T. A more basic isoform differs in the NH2-terminal region by the replacement of 7 glutamic acid residues by neutral amino acids. Comparison of the sequence with that of rabbit skeletal troponin T shows close homology in those structural regions (residues 47-151 and 170-236 of rabbit skeletal troponin T) previously implicated in interactions with tropomyosin, troponin I and troponin C and predicts similar secondary structural features. In addition, the NH2- (16 residues) and COOH-terminal (10 residues) segments are homologous. In the cardiac protein, the regions of residues 17-46, 152-169, and 237-249 (rabbit skeletal troponin T numbering scheme) show little similarity with the skeletal protein and include multiple amino acid differences as well as insertions and/or deletions. Within these nonhomologous segments, however, there are regions of high similarity or identity with the amino acid sequence of chicken cardiac troponin T deduced from DNA sequencing (Cooper, T.A., and Ordahl, C.P. (1985) J. Biol. Chem. 260, 11140-11148). These include residues 36-46, 152-161, and 237-242 and may represent regions of functional importance for cardiac troponin T as compared with the skeletal protein.  相似文献   

3.
1. The CNBr digest of troponin C from rabbit fast skeletal muscle was shown to possess many of the functional properties of the whole troponin C molecule. 2. A peptide corresponding to residues 83-134 was isolated, which forms a Ca(2+-dependent complex with troponin I and neutralizes the inhibition by troponin I of the Mg(2+-stimulated adenosine triphosphatase of desensitized actomyosin. 3. The peptide inhibits the phosphorylation of fast-skeletal-muscle, but not cardiac-muscle, troponin I, by 3' :5'-cyclic AMP-dependent protein kinase. In this property it was as effective as whole skeletal-muscle troponin C when compared on a molar basis. 4. Biological activity was also present in other fractions obtained from the CNBr digest. 5. By gel filtration and affinity chromatography of the whole CNBr digest of troponin C, two peptides, one of which was identified as representing residues 83-134, were shown to form Ca(2+-dependent complexes with troponin I. 6. The significance of these findings for the mechanism of interaction of troponin C and troponin I is discussed.  相似文献   

4.
The inhibitory region of troponin I (TnI) plays a central regulatory role in the contraction and relaxation cycle of skeletal and cardiac muscle through its Ca(2+)-dependent interaction with actin. Detailed structural information on the interface between TnC and this region of TnI has been long in dispute. We have used fluorescence resonance energy transfer (FRET) to investigate the global conformation of the inhibitory region of a full-length TnI mutant from cardiac muscle (cTnI) in the unbound state and in reconstituted complexes with the other cardiac troponin subunits. The mutant contained a single tryptophan residue at the position 129 which was used as an energy transfer donor, and a single cysteine residue at the position 152 labeled with IAEDANS as energy acceptor. The sequence between Trp129 and Cys152 in cTnI brackets the inhibitory region (residues 130-149), and the distance between the two sites was found to be 19.4 A in free cTnI. This distance was insensitive to reconstitution of cTnI with cardiac troponin T (cTnT), cTnC, or cTnC and cTnT in the absence of bound regulatory Ca(2+) in cTnC. An increase of 9 A in the Trp129-Cys152 separation was observed upon saturation of the Ca(2+) regulatory site of cTnC in the complexes. This large increase suggests an extended conformation of the inhibitory region in the interface between cTnC and cTnI in holo cardiac troponin. This extended conformation is different from a recent model of the Ca(2+)-saturated skeletal TnI-TnC complex in which the inhibitory region is modeled as a beta-turn. The observed Ca(2+)-induced conformational change may be a switch mechanism by which movement of the regulatory region of cTnI to the exposed hydrophobic patch of the open regulatory N-domain of cTnC pulls the inhibitory region away from actin upon Ca(2+) activation in cardiac muscle.  相似文献   

5.
Amino acid sequence of bovine cardiac troponin I   总被引:4,自引:0,他引:4  
Troponin I (TnI) is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium sensitivity to striated muscle actomyosin ATPase activity. We have determined the amino acid sequence of TnI from adult bovine cardiac muscle. This protein is a single polypeptide chain of 211 amino acids with an acetylated amino terminus, a calculated molecular weight of 23,975, and a net charge of +17 at neutral pH. There was no evidence for heterogeneity of the sequence. Comparison with other available TnI sequences shows an amino-terminal extension of 27-33 residues which is present in cardiac but not skeletal TnI. The remainder of the polypeptide is common to both cardiac and skeletal TnI. In the amino-terminal half of the common polypeptide, only 29% of the residues are invariant in all sequences. The carboxyl-terminal half (residues 124-210) is much more highly conserved, with 66% invariant residues. Bovine cardiac TnI and rabbit cardiac TnI are very similar in sequence: only 12 of 26 residues are identical in the amino-terminal segments, but the remaining residues of the proteins are 97% identical.  相似文献   

6.
Internal homologies in an amino acid sequence of a protein and in amino acid sequences of two different proteins are examined, using correlation coefficients calculated from the sequences when residues are replaced by various quantitative properties of the amino acids such as hydrophobicity. To improve the signal-noise ratio the average correlation coefficient is used to detect homology because the correlation depends on the property considered. In this way, any sequence repetition in a protein and the extent of the similarity and difference among proteins can be estimated quantitatively. The procedure was applied first to the sequences of proteins which have been assumed on other grounds to contain some internal sequence repetitions, α-tropomyosin from rabbit skeletal muscle, calmodulin from bovine brain, troponin C from skeletal and cardiac muscle, and then to the sequences of calcium binding proteins, calmodulin, troponin C, and L2 light chain of myosin. The results show that α-tropomyosin has a markedly periodic sequence at intervals of multiples of seven residues throughout the whole sequence, and calmodulin and skeletal troponin C contain two homologous sequences, the homology of troponin C being weaker than that of calmodulin. Candidates for the calcium binding regions of both troponin C, calmodulin, and L2 light chain are the homologous parts having a high average correlation coefficient (about 0·5) with respect to the sequences of the CD and EF hand regions of carp parvalbumin. The procedure may be a useful method for searching for homologous segments in amino acid sequences.  相似文献   

7.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.  相似文献   

8.
cDNAs containing the complete coding sequences of four isoforms of troponin T derived from 1-week-old chick skeletal muscle have been isolated and sequenced. While the 5' and 3' untranslated regions and most of the coding sequence were identical for each, dramatic differences were observed in the NH2-terminal region corresponding to amino acid residues 10-37 of rabbit skeletal troponin T. These sequence differences correspond to the alternatively spliced but not mutually exclusive exons 4 to 8 of the rat skeletal muscle troponin T gene. In addition, we observe a sequence corresponding to an extra exon or exons (between 5 and 6) present in the chicken skeletal muscle gene and not previously detected in the rat skeletal or chicken cardiac genes. This sequence of 63 nucleotides consists of an almost perfect repeat of 30 and 33 nucleotides and has previously been shown to be represented as a protein variant in chicken skeletal muscle. A difference is also present in one cDNA clone corresponding to the alternatively spliced (mutually exclusive) exons 16 and 17 of the rat gene. In the protein, this corresponds to a region implicated in the interaction of troponin T with troponin C, tropomyosin, and perhaps troponin I and F-actin.  相似文献   

9.
The amino acid sequence of rabbit slow-muscle troponin I   总被引:1,自引:1,他引:0       下载免费PDF全文
Troponin I was isolated from six red muscles in the hind leg of the rabbit. Soleus, semi-tendinosus, vastus intermedius and adductor longus muscles contained primarily slow-muscle troponin I, vastus lateralis contained fast-muscle troponin I and quadratus femoris contained a mixture of the two. The complete amino acid sequence of the troponin I from slow muscle was determined. Seven CNBr fragments were isolated and sequenced by using the dansyl-Edman technique after digestion with proteolytic enzymes. The CNBr fragments were ordered by isolation of tryptic peptides containing carboxy[(14)C]methyl-methionine. Direct evidence for the conjunction of residues 8 and 9 has not been obtained, and one of the carboxyl groups between residues 71 and 79 may carry an amide group. Slow-muscle troponin I is a single polypeptide chain of 184 residues with a mol.wt. of 21146. It has a net overall positive charge of 18 at pH7, and an absorption coefficient, A(1%,1cm) (280), of 5.43. The protein was isolated with both a blocked and an unblocked N-terminus, although the nature of the blocking group was not determined. Proline was found to be the N-terminal amino acid. Two forms of the protein could also be distinguished by the presence of an extra two residues at the C-terminus. Comparison of sequences of troponin I from rabbit slow, fast and cardiac muscle shows that homology is most marked in the C-terminal half of the molecules. Towards the N-terminus the homology becomes much less marked. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50079 (32 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained in the terms given in Biochem. J. (1977), 161, 1.  相似文献   

10.
Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility. Following a Ca2+ signal to begin contraction, the inhibitory region of troponin I comprising residues Thr128-Arg147 relocates from its binding surface on actin to troponin C, triggering movement of troponin-tropomyosin within the thin filament and thereby freeing actin-binding site(s) for interactions with the myosin ATPase of the thick filament to generate the power stroke. The structure of calcium-saturated cardiac troponin C (C-domain) in complex with the inhibitory region of troponin I was determined using multinuclear and multidimensional nuclear magnetic resonance spectroscopy. The structure of this complex reveals that the inhibitory region adopts a helical conformation spanning residues Leu134-Lys139, with a novel orientation between the E- and H-helices of troponin C, which is largely stabilized by electrostatic interactions. By using isotope labeling, we have studied the dynamics of the protein and peptide in the binary complex. The structure of this inhibited complex provides a framework for understanding into interactions within the troponin complex upon heart contraction.  相似文献   

11.
1. A series of defined peptides which span the complete sequence were produced from troponin I isolated from white skeletal muscle of the rabbit. 2. Two peptides, CF1 (residues 64-133) and CN4 (residues 96-117) inhibited the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition was potentiated by tropomyosin and the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition, unlike that of troponin I and peptides derived from it, was not potentiated by tropomyosin. 4. The most active inhibitor, peptide CN4, was 45-75% as effective as troponin I when compared on a molar basis. The inhibitory peptide, CN4, and also whole troponin I were shown by affinity chromatography to interact specifically with actin. 5. A strong interaction with troponin C was demonstrated with peptide CF2 (residues 1-47), from the N-terminal region of troponin I. Somewhat weaker interactions were shown with peptides CN5 (residues 1-21) and with the inhibitory peptide CN4. 6. The significance of these interactions for the mechanisms of action of troponin I is discussed.  相似文献   

12.
Troponin from the myocardium and skeletal muscles: structure and properties   总被引:1,自引:0,他引:1  
The literary and experimental data on the structure and properties of cardiac and skeletal muscle troponin are reviewed. The cation--binding sites of cardiac and skeletal muscle troponin C are distinguished by specificity; the sites localized in the C-terminal part of the protein molecule can bind both Ca2+ and Mg2+, whereas the sites localized at the N-end specifically bind Ca2+. The use of bifunctional reagents revealed a number of helical sites within the structure of cardiac troponin C (residues 84-92 and 150-158) and of skeletal muscle troponin C (residues 90-98 and 125-136). A comparison of experimental data with the results of an X-ray analysis testifies to the presence in the central part of the troponin C molecule of a long alpha-helical sequence responsible for troponin C interaction with the inhibiting peptide of troponin I. The efficiency of interaction of troponin components depends on Ca2+ concentration; the integrity of the overall troponin complex is mainly provided for by troponin C interaction with troponin I and by troponin I interaction with troponin T. The interaction between troponins T and C is relatively weak, especially in the case of cardiac troponin components. Both skeletal and cardiac muscles synthesize several troponin T isoforms differing in length and amino acid composition of N-terminal 40-60 member peptides. Troponin T isoforms can undergo phosphorylation by several protein kinases. The single site of troponin T which exists in a phosphorylated state in vivo (residue Ser-1) undergoes phosphorylation by specific protein kinase (troponin T kinase) related to casein kinases II. It was assumed that the phosphorylation of Ser-1 residue of troponin T as well as the synthesis of troponin T isoforms differing in the structure of the N-terminal peptide, provides for the regulation of interaction between two neighbouring tropomyosin molecules.  相似文献   

13.
Structure-function relationships in cardiac troponin T   总被引:3,自引:0,他引:3  
Regions of rabbit and bovine cardiac troponin T that are involved in binding tropomyosin, troponin C and troponin I have been identified. Two sites of contact for tropomyosin have been located, situated between residues 92-178 and 180-284 of troponin T. A cardiac-specific binding site for troponin I has been identified between residues 1-68 of cardiac troponin T, within a region of the protein that has previously been shown to be encoded by a series of exons that are expressed in a tissue-specific and developmentally regulated manner. The binding site for troponin C is located between residues 180-284 of cardiac troponin T. When isolated from fresh bovine hearts, cardiac troponin T contained 0.21 +/- 0.11 mol phosphate per mol; incubation with phosphorylase kinase increased the phosphate content to approx. 1 mol phosphate per mol. One site of phosphorylation was identified as serine-1; a second site of phosphorylation was located within peptide CB3 (residues 93-178) and has been tentatively identified as serine-176. Addition of troponin C to cardiac troponin T does not inhibit the phosphorylation of this latter protein that is catalysed by phosphorylase b kinase.  相似文献   

14.
Troponin I (TnI) is the inhibitory component of troponin, the ternary complex that regulates skeletal and cardiac muscle contraction. Previous work showed that the C-terminal region of TnI, when linked to the "inhibitory region" (residues 98-116), possesses the major regulatory functions of the molecule (Farah, C. S., Miyamoto, C. A., Ramos, C. H. I., Silva, A. C. R., Quaggio, R. B., Fujimori, K., Smillie, L. B., and Reinach, F. C. (1994) J. Biol. Chem. 269, 5230-5240). To investigate these functions in more detail, serial deletion mutants of the C-terminal region of TnI were constructed. These experiments showed that longer C-terminal deletions result in lower inhibition of the actomyosin ATPase activity and weaken the interaction with the N-terminal domain of troponin C (TnC), consistent with the antiparallel model for the interaction between these two proteins. The conclusion is that the whole C-terminal region of TnI is necessary for its full regulatory activity. The region between residues 137 and 144, which was shown to have homology with residues 108-115 in the inhibitory region (Farah, C. S., and Reinach, F. C. (1995) FASEB J. 9, 755-767), is involved in the binding to TnC. The region between residues 98 and 129 is involved in modulating the affinity of TnC for calcium. The C-terminal residues 166-182 are involved in the binding of TnI to thin filament. A model for the function of TnI is discussed.  相似文献   

15.
A cardiac troponin T epitope conserved across phyla.   总被引:9,自引:0,他引:9  
Troponin T is a thin filament protein that is important in regulating striated muscle contraction. We have raised a monoclonal antibody against rabbit cardiac troponin T, monoclonal (mAb) 13-11, that recognizes its epitope in cardiac troponin T isoforms from fish, bird, and mammal but not from frog. The number of these isoforms expressed in cardiac muscle varies among species and during development. Cardiac troponin T isoforms were not found in adult skeletal muscle, while they were expressed transiently in immature skeletal muscle. We have mapped the epitope recognized by mAb 13-11 using rabbit cardiac troponin T isoforms. Analysis of stepwise cyanogen bromide digestion, which allowed association of the epitope to regions spanning methionine residues, coupled with immunoactivity of synthetic peptides, corresponding to sequences containing methionine residues, indicated that mAb 13-11 recognized its epitope in a 17-residue sequence containing the methionine at position 68, SKPKPRPFMPNLVPPKI. Comparison of skeletal and cardiac troponin T sequences suggested that the epitope was contained within the sequence FMPNLVPPKI. Synthetic peptides PFMPNLVPPKI and FMPNLVPPKI were recognized by mAb 13-11 on slot-blots. Enzyme-linked immunosorbent assay demonstrated mAb 13-11 recognized, in order of descending affinity, the 17-, 11-, and 10-residue sequence. Preabsorption of mAb 13-11 with each of these sequences blocked the recognition of the 17-residue peptide by mAb 13-11. The domain, PFMPNLVPPKI is encoded by the 5' region of the cardiac gene exon 10 and is present in hearts across a broad range of phyla. These findings suggest that this cardiac troponin T-specific sequence confers onto myofilaments structural and functional properties unique to the heart.  相似文献   

16.
Peptides corresponding to the N-terminus of skeletal myosin light chain 1 (rsMLC1 1-37) and the short loop of human cardiac beta-myosin (hcM398-414) have been shown to interact with skeletal F-actin by NMR and fluorescence measurements. Skeletal tropomyosin strengthens the binding of the myosin peptides to actin but does not interact with the peptides. The binding of peptides corresponding to the inhibitory region of cardiac troponin I (e.g. hcTnI128-153) to F-actin to form a 1 : 1 molar complex is also strengthened in the presence of tropomyosin. In the presence of inhibitory peptide at relatively lower concentrations the myosin peptides and a troponin I peptide C-terminal to the inhibitory region, rcTnI161-181, all dissociate from F-actin. Structural and fluorescence evidence indicate that the troponin I inhibitory region and the myosin peptides do not bind in an identical manner to F-actin. It is concluded that the binding of the inhibitory region of troponin I to F-actin produces a conformational change in the actin monomer with the result that interaction at different locations of F-actin is impeded. These observations are interpreted to indicate that a major conformational change occurs in actin on binding to troponin I that is fundamental to the regulatory process in muscle. The data are discussed in the context of tropomyosin's ability to stabilize the actin filament and facilitate the transmission of the conformational change to actin monomers not in direct contact with troponin I.  相似文献   

17.
A cDNA expression library prepared from mRNA of Haemaphysalis longicornis (H. longicornis) was screened with a H. longicornis-infested rabbit serum. A cDNA encoding 27/30kDa proteins was cloned and designated P27/30 gene. The predicted amino acid sequence of the P27/30 gene shows a rather high homology (58% amino acid identities and 11% amino acid similarity) with Drosophila melanogaster troponin I clone E2. H. longicornis P27/30 possesses amino acid sequence of actin-binding domains of troponin I at the amino acid residues 128-148, suggesting that H. longicornis P27/30 is a troponin I-like protein. By immunoblot analysis, mouse anti-recombinant P27/30 serum reacted with major constituent protein bands in extracts of adult ticks, and also immunoreacted with muscle, cuticle, gut, and salivary gland in H. longicornis ticks. Moreover, immunohistochemistry using the anti-P27/30 serum showed a strong reactivity in muscle, suggesting that native P27/30 is expressed abundantly in that tissue.  相似文献   

18.
We have isolated and sequenced a cDNA encoding rat cardiac troponin I. The predicted amino acid sequence was highly identical with previously reported chemically derived amino acid sequences for rabbit and bovine cardiac troponin I. Clones for slow skeletal muscle troponin I were also obtained from neonatal rat cardiac ventricle by the polymerase chain reaction. The nucleotide sequences of these clones were determined to be more than 99% identical with a previously reported rat slow skeletal troponin I cDNA [Koppe et al. (1989) J. Biol. Chem. 264, 14327-14333]. The troponin I clones hybridized to RNA from the appropriate muscle from adult animals. However, RNA from fetal and neonatal rat heart also hybridized with the slow skeletal troponin I cDNA, demonstrating its expression in fetal and neonatal rat heart. Slow skeletal troponin I steady-state mRNA levels decreased with increasing age, but cardiac troponin I mRNA levels increased through fetal and early neonatal cardiac development. Thus, during fetal and neonatal development, slow skeletal and cardiac troponin I isoforms are coexpressed in the rat heart and regulated in opposite directions. The degree of primary sequence differences in these isoforms, especially at phosphorylation sites, may result in important functional differences in the neonatal myocardium.  相似文献   

19.
The contiguous inhibitory and regulatory regions of troponin I in the heterotrimeric troponin complex play a critical role in Ca2+ activation of striated muscle. Knowledge of the structure of this critical region within the complex will enhance efforts toward understanding regulatory mechanisms. Toward this goal, we have used simulated annealing to study the structure of the inhibitory and regulatory regions of cardiac muscle troponin I in the calcium-saturated complex formed between cardiac troponin C and cardiac troponin I. We have incorporated distances determined experimentally by Förster resonance energy transfer in the full-length complex, rather than using peptides derived from cTnI. For these models, we assume a helix-loop-helix conformation for the inhibitory region. We have found several structures that satisfy the experimental constraints fairly well. Although it is not possible to eliminate any of these models at this time, future studies with additional experimental restraints will yield insights on the mechanisms of calcium regulation in cardiac muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号