首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viruses play diverse and important roles in ecosystems. In recent years, trade-offs between host and virus traits have gained increasing attention in viral ecology and evolution. However, microbial organism traits, and viral population parameters in particular, are challenging to monitor. Mathematical and individual-based models are useful tools for predicting virus-host dynamics. We have developed an individual-based evolutionary model to study ecological interactions and evolution between bacteria and viruses, with emphasis on the impacts of trade-offs between competitive and defensive host traits on bacteria-phage population dynamics and trait diversification. Host dynamics are validated with lab results for different initial virus to host ratios (VHR). We show that trade-off based, as opposed to random bacteria-virus interactions, result in biologically plausible evolutionary outcomes, thus highlighting the importance of trade-offs in shaping biodiversity. The effects of nutrient concentration and other environmental and organismal parameters on the virus-host dynamics are also investigated. Despite its simplicity, our model serves as a powerful tool to study bacteria-phage interactions and mechanisms for evolutionary diversification under various environmental conditions.  相似文献   

2.
The concept of a trade-off has long played a prominent role in understanding the evolution of organismal interactions such as mutualism, parasitism, and competition. Given the complexity inherent to interactions between different evolutionary entities, ecological factors may especially limit the power of trade-off models to predict evolutionary change. Here, we use four case studies to examine the importance of ecological context for the study of trade-offs in organismal interactions: (1) resource-based mutualisms, (2) parasite transmission and virulence, (3) plant biological invasions, and (4) host range evolution in parasites and parasitoids. In the first two case studies, mechanistic trade-off models have long provided a strong theoretical framework but face the challenge of testing assumptions under ecologically realistic conditions. Work under the second two case studies often has a strong ecological grounding, but faces challenges in identifying or quantifying the underlying genetic mechanism of the trade-off. Attention is given to recent studies that have bridged the gap between evolutionary mechanism and ecological realism. Finally, we explore the distinction between ecological factors that mask the underlying evolutionary trade-offs, and factors that actually change the trade-off relationship between fitness-related traits important to organismal interactions.  相似文献   

3.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect–microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

4.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect-microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

5.
Central to most theories that explain the diversity of life is the concept that organisms face trade-offs. Theoretical work has shown that the precise shape of a trade-off relationship affects evolutionary predictions. One common trade-off is that between competitive ability and resistance to predators, parasitoids, pathogens or herbivores. We used a microbial experimental system to elucidate the shape of the relationship between parasitoid resistance and competitive ability. For each of 86 bacteriophage-resistant isolates of the bacterium Escherichia coli B, we measured the degree of resistance to bacteriophage T2 (a viral parasitoid) and relative competitive ability in both the resource environment in which strains were isolated and in two alternate environments. We observed that environmental change can alter trade-off shape, and that different physiological mechanisms can lead to different trade-off shapes and different sensitivities to environmental change. These results highlight the important interaction between environment and trade-off shape in affecting ecological and evolutionary dynamics.  相似文献   

6.
The evolution of ecological trade-offs is an important component of ecological specialization and adaptive radiation. However, the pattern that would show that evolutionary trade-offs have occurred between traits among species has not been clearly defined. In this paper, we propose a phylogeny-based definition of an evolutionary trade-off, and apply it to an analysis of the evolution of trade-offs in locomotor performance in emydid turtles. We quantified aquatic and terrestrial speed and endurance for up to 16 species, including aquatic, semi-terrestrial and terrestrial emydids. Emydid phylogeny was reconstructed from morphological characters and nuclear and mitochondrial DNA sequences. Surprisingly, we find that there have been no trade-offs in aquatic and terrestrial speed among species. Instead, specialization to aquatic and terrestrial habitats seems to have involved trade-offs in speed and endurance. Given that trade-offs between speed and endurance may be widespread, they may underlie specialization to different habitats in many other groups.  相似文献   

7.
 Understanding mechanisms of evolutionary diversification is central to evolutionary biology. Microbes constitute promising model systems for observing processes of diversification directly in the laboratory. One of the main existing paradigms for microbial diversification is the evolution of cross-feeding polymorphisms, in which a strain specializing on a primary resource coexists with a cross-feeding strain that specializes on a waste product resulting from consumption of the primary resource. Here I propose a theoretical model for the evolutionary dynamics through which cross-feeding polymorphisms can gradually emerge from a single ancestral strain. The model is based on the framework of adaptive dynamics, which has proved to be very useful for studying adaptive processes of divergence under sympatric conditions. In particular, the phenomenon of evolutionary branching serves as a general paradigm for diversification. I show that evolutionary branching naturally occurs in evolutionary models of cross-feeding if (1) there is a trade-off between uptake efficiencies on the primary and secondary resources, and (2) this trade-off has positive curvature. The model also suggests that the evolution of cross-feeding should be more likely in chemostat cultures than in serial batch cultures, which conforms with empirical observations. Overall, the model provides a theoretical metaphor for the evolution of cross-feeding polymorphisms. Received: February 19, 2002 / Accepted: May 8, 2002  相似文献   

8.
MacLean RC 《Heredity》2008,100(3):233-239
First principles of thermodynamics imply that metabolic pathways are faced with a trade-off between the rate and yield of ATP production. Simple evolutionary models argue that this trade-off generates a fundamental social conflict in microbial populations: average fitness in a population is highest if all individuals exploit common resources efficiently, but individual reproductive rate is maximized by consuming common resources at the highest possible rate, a scenario known as the tragedy of the commons. In this paper, I review studies that have addressed two key questions: What is the evidence that the rate-yield trade-off is an evolutionary constraint on metabolic pathways? And, if so, what determines evolutionary outcome of the conflicts generated by this trade-off? Comparative studies and microbial experiments provide evidence that the rate-yield trade-off is an evolutionary constraint that is driven by thermodynamic constraints that are common to all metabolic pathways and pathway-specific constraints that reflect the evolutionary history of populations. Microbial selection experiments show that the evolutionary consequences of this trade-off depend on both kin selection and biochemical constraints. In well-mixed populations with low relatedness, genotypes with rapid and efficient metabolism can coexist as a result of negative frequency-dependent selection generated by density-dependent biochemical costs of rapid metabolism. Kin selection can promote the maintenance of efficient metabolism in structured populations with high relatedness by ensuring that genotypes with efficient metabolic pathways gain an indirect fitness benefit from their competitive restraint. I conclude by suggesting avenues for future research and by discussing the broader implications of this work for microbial social evolution.  相似文献   

9.
MacLean RC 《Heredity》2008,100(5):471-477
First principles of thermodynamics imply that metabolic pathways are faced with a trade-off between the rate and yield of ATP production. Simple evolutionary models argue that this trade-off generates a fundamental social conflict in microbial populations: average fitness in a population is highest if all individuals exploit common resources efficiently, but individual reproductive rate is maximized by consuming common resources at the highest possible rate, a scenario known as the tragedy of the commons. In this paper, I review studies that have addressed two key questions: What is the evidence that the rate-yield trade-off is an evolutionary constraint on metabolic pathways? And, if so, what determines evolutionary outcome of the conflicts generated by this trade-off? Comparative studies and microbial experiments provide evidence that the rate-yield trade-off is an evolutionary constraint that is driven by thermodynamic constraints that are common to all metabolic pathways and pathway-specific constraints that reflect the evolutionary history of populations. Microbial selection experiments show that the evolutionary consequences of this trade-off depend on both kin selection and biochemical constraints. In well-mixed populations with low relatedness, genotypes with rapid and efficient metabolism can coexist as a result of negative frequency-dependent selection generated by density-dependent biochemical costs of rapid metabolism. Kin selection can promote the maintenance of efficient metabolism in structured populations with high relatedness by ensuring that genotypes with efficient metabolic pathways gain an indirect fitness benefit from their competitive restraint. I conclude by suggesting avenues for future research and by discussing the broader implications of this work for microbial social evolution.  相似文献   

10.
Resource allocation trade-offs arise when developing organs are in competition for a limited pool of resources to sustain growth and differentiation. Such competition may constrain the maximal size to which structures can grow and may force a situation in which the evolutionary elaboration of one structure may only be possible at the expense of another. However, recent studies have called into question both the consistency and evolutionary importance of resource allocation trade-offs. This study focuses on a well-described trade-off between the horns and eyes of Onthophagus beetles and assesses the degree to which it is influenced by genetic, developmental and ecological conditions. Contrary to expectations, we observed that trade-off signatures (i) were mostly absent within natural populations, (ii) mostly failed to match naturally evolved divergences in horn investment among populations, (iii) were subject to differential changes in F1 populations derived from divergent field populations and (iv) remained largely unaffected by developmental genetic manipulations of horn investment. Collectively, our results demonstrate that populations subject to different ecological conditions exhibit different patterns of, and differential plasticity in, resource allocation. Further, variation in ecological conditions, rather than canalized developmental mechanisms, may determine whether and to what degree morphological structures engage in resource allocation trade-offs.  相似文献   

11.
According to life-history theory, the evolution of offspring size is constrained by the trade-off between allocation of resources to individual offspring and the number of offspring produced. Existing models explore the ecological consequences of offspring size, whereas number is invariably treated simply as an outcome of the trade-off with size. Here I ask whether there is a direct evolutionary advantage of increased allocation to offspring number under environmental unpredictability. Variable environments are expected to select for diversification in the timing of egg hatch and seed germination, yet the dependence of the expression of diversification strategies, and thus parental fitness, on offspring number has not previously been recognized. I begin by showing that well-established sampling theory predicts that a target bethedging diversification strategy is more reliably achieved as offspring number increases. I then use a simulation model to demonstrate that higher offspring number leads to greater geometric mean fitness under environmental uncertainty. Natural selection is thus expected to act directly to increase offspring number under assumptions of environmental unpredictability in season quality.  相似文献   

12.
Pleiotropic fitness trade-offs will be key determinants of the evolutionary dynamics of selection for pesticide resistance. However, for herbicide resistance, empirical support for a fitness cost of resistance is mixed, and it is therefore also questionable what further ecological trade-offs can be assumed to apply to herbicide resistance. Here, we test the existence of trade-offs by experimentally evolving herbicide resistance in Chlamydomonas reinhardtii. Although fitness costs are detected for all herbicides, we find that, counterintuitively, the most resistant populations also have the lowest fitness costs as measured by growth rate in the ancestral environment. Furthermore, after controlling for differences in the evolutionary dynamics of resistance to different herbicides, we also detect significant positive correlations between resistance, fitness in the ancestral environment and cross-resistance to other herbicides. We attribute this to the highest levels of nontarget-site resistance being achieved by fixing mutations that more broadly affect cellular physiology, which results in both more cross-resistance and less overall antagonistic pleiotropy on maximum growth rate. Consequently, the lack of classical ecological trade-offs could present a major challenge for herbicide resistance management.  相似文献   

13.
Trade-off shapes are crucial to evolutionary outcomes. However, due to different ecological feedbacks their implications may depend not only on the trade-off being considered but also the ecological scenario. Here, we apply a novel geometric technique, trade-off and invasion plots (TIPs), to examine in detail how the shape of trade-off relationships affect evolutionary outcomes under a range of classic ecological scenarios including Lotka-Volterra type and host-parasite interactions. We choose models of increasing complexity in order to gain an insight into the features of ecological systems that determine the evolutionary outcomes. In particular we focus on when evolutionary attractors, repellors and branching points occur and how this depends on whether the costs are accelerating (benefits become ‘increasingly’ costly), decelerating (benefits become ‘decreasingly’ costly) or constant. In all cases strongly accelerating costs lead to attractors while strongly decelerating ones lead to repellors, but with weaker relationships, this no longer holds. For some systems weakly accelerating costs may lead to repellors and decelerating costs may lead to attractors. In many scenarios it is weakly decelerating costs that lead to branching points, but weakly accelerating and linear costs may also lead to disruptive selection in particular ecological scenarios. Using our models we suggest a classification of ecological interactions, based on three distinct criteria, that can produce one of four fundamental TIPs which allow for different evolutionary behaviour. This provides a baseline theory which may inform the prediction of evolutionary outcomes in similar yet unexplored ecological scenarios. In addition we discuss the implications of our results to a number of specific life-history trade-offs in the classic ecological scenarios represented by our models.  相似文献   

14.
Mitigating trade-offs between different resource-utilization functions is key to an organism’s ecological and evolutionary success. These trade-offs often reflect metabolic constraints with a complex molecular underpinning; therefore, their consequences for evolutionary processes have remained elusive. Here, we investigate how metabolic architecture induces resource-utilization constraints and how these constraints, in turn, elicit evolutionary specialization and diversification. Guided by the metabolic network structure of the bacterium Lactococcus cremoris, we selected two carbon sources (fructose and galactose) with predicted coutilization constraints. By evolving L. cremoris on either fructose, galactose, or a mix of both sugars, we imposed selection favoring divergent metabolic specializations or coutilization of both resources, respectively. Phenotypic characterization revealed the evolution of either fructose or galactose specialists in the single-sugar treatments. In the mixed-sugar regime, we observed adaptive diversification: both specialists coexisted, and no generalist evolved. Divergence from the ancestral phenotype occurred at key pathway junctions in the central carbon metabolism. Fructose specialists evolved mutations in the fbp and pfk genes that appear to balance anabolic and catabolic carbon fluxes. Galactose specialists evolved increased expression of pgmA (the primary metabolic bottleneck of galactose metabolism) and silencing of ptnABCD (the main glucose transporter) and ldh (regulator/enzyme of downstream carbon metabolism). Overall, our study shows how metabolic network architecture and historical contingency serve to predict targets of selection and inform the functional interpretation of evolved mutations. The elucidation of the relationship between molecular constraints and phenotypic trade-offs contributes to an integrative understanding of evolutionary specialization and diversification.  相似文献   

15.
Phenotypic plasticity in general and polyphenic development in particular are thought to play important roles in organismal diversification and evolutionary innovation. Focusing on the evolutionary developmental biology of insects, and specifically that of horned beetles, I explore the avenues by which phenotypic plasticity and polyphenic development have mediated the origins of novelty and diversity. Specifically, I argue that phenotypic plasticity generates novel targets for evolutionary processes to act on, as well as brings about trade-offs during development and evolution, thereby diversifying evolutionary trajectories available to natural populations. Lastly, I examine the notion that in those cases in which phenotypic plasticity is underlain by modularity in gene expression, it results in a fundamental trade-off between degree of plasticity and mutation accumulation. On one hand, this trade-off limits the extent of plasticity that can be accommodated by modularity of gene expression. On the other hand, it causes genes whose expression is specific to rare environments to accumulate greater variation within species, providing the opportunity for faster divergence and diversification between species, compared with genes expressed across environments. Phenotypic plasticity therefore contributes to organismal diversification on a variety of levels of biological organization, thereby facilitating the evolution of novel traits, new species and complex life cycles.  相似文献   

16.
JM Kneitel 《PloS one》2012,7(7):e41809
Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales can contribute to our understanding of the mechanisms underlying community structure.  相似文献   

17.
Trade-offs between different components of a pathogen''s replication and transmission cycle are thought to be common. A number of studies have identified trade-offs that emerge across scales, reflecting the tension between strategies that optimize within-host proliferation and large-scale population spread. Most of these studies are theoretical in nature, with direct experimental tests of such cross-scale trade-offs still rare. Here, we report an analysis of avian influenza A viruses across scales, focusing on the phenotype of temperature-dependent viral persistence. Taking advantage of a unique dataset that reports both environmental virus decay rates and strain-specific viral kinetics from duck challenge experiments, we show that the temperature-dependent environmental decay rate of a strain does not impact within-host virus load. Hence, for this phenotype, the scales of within-host infection dynamics and between-host environmental persistence do not seem to interact: viral fitness may be optimized on each scale without cross-scale trade-offs. Instead, we confirm the existence of a temperature-dependent persistence trade-off on a single scale, with some strains favouring environmental persistence in water at low temperatures while others reduce sensitivity to increasing temperatures. We show that this temperature-dependent trade-off is a robust phenomenon and does not depend on the details of data analysis. Our findings suggest that viruses might employ different environmental persistence strategies, which facilitates the coexistence of diverse strains in ecological niches. We conclude that a better understanding of the transmission and evolutionary dynamics of influenza A viruses probably requires empirical information regarding both within-host dynamics and environmental traits, integrated within a combined ecological and within-host framework.  相似文献   

18.
There is substantial evidence that evolutionary diversification can occur in allopatric conditions through reduction in the degree of phenotypic plasticity when an isolated population encounters a novel, more stable environment. Plasticity is no longer favored in the new environment, either because it carries an inherent physiological cost or because it leads to production of suboptimal phenotypes. In order to explore the role of phenotypic plasticity in sympatric diversification, we modeled the ecological and evolutionary dynamics of Escherichia coli bacteria in batch cultures. Our results describe an evolutionary pathway leading to metabolic diversification in a sympatric environment without spatial structure. In an environment that fluctuates widely and predictably, evolutionary branching leads to diversification and stable coexistence of generalist and specialist ecotypes for some combinations of parameters. Diversification and stable coexistence occur when reaction norms are steep and trade-offs between metabolic pathways are convex. We conclude that, in principle, diversification due to reduced plasticity can occur without allopatric isolation, reduced environmental variability, or an explicit cost of plasticity.  相似文献   

19.
The purpose of this paper is to take an entirely geometrical path to determine the evolutionary properties of ecological systems subject to trade-offs. In particular we classify evolutionary singularities in a geometrical fashion. To achieve this, we study trade-off and invasion plots (TIPs) which show graphically the outcome of evolution from the relationship between three curves. The first invasion boundary (curve) has one strain as resident and the other strain as putative invader and the second has the roles of the strains reversed. The parameter values for one strain are used as the origin with those of the second strain varying. The third curve represents the trade-off. All three curves pass through the origin or tip of the TIP. We show that at this point the invasion boundaries are tangential. At a singular TIP, in which the origin is an evolutionary singularity, the invasion boundaries and trade-off curve are all tangential. The curvature of the trade-off curve determines the region in which it enters the singular TIP. Each of these regions has particular evolutionary properties (EUS, CS, SPR and MI). Thus we determine by direct geometric argument conditions for each of these properties in terms of the relative curvatures of the trade-off curve and invasion boundaries. We show that these conditions are equivalent to the standard partial derivative conditions of adaptive dynamics. The significance of our results is that we can determine whether the singular strategy is an attractor, branching point, repellor, etc. simply by observing in which region the trade-off curve enters the singular TIP. In particular we find that, if and only if the TIP has a region of mutual invadability, is it possible for the singular strategy to be a branching point. We illustrate the theory with an example and point the way forward.  相似文献   

20.
Mixed pathogenic infections are known to have profound effects on the ecological and evolutionary diversity of both hosts and parasites. Although a variety of mechanisms have been proposed by which hosts can withstand parasitic infections, the role of multiple infections and the trade-off in multiple defence strategies remain relatively unexplored. We develop a stage-structured host-pathogen model to explore the ecological and evolutionary dynamics of host resistance to different modes of infection. In particular, we investigate how the evolution of resistance is influenced through infection by a lethal pathogen and a non-lethal synergist (that only acts to enhance the infectivity of the pathogen). We extend our theoretical framework to explore how trade-offs in the ability to withstand infection by the lethal pathogen and the ability to tolerate the synergist affect the likelihood of coexistence and the evolution of polymorphic host strategies. We show how the underlying structure of the trade-off surface is crucial in the maintenance of resistance polymorphisms. Further, depending on the shape of the trade-off surface, we predict that different levels of host resistance will show individual responses to the presence of non-lethal synergists. Our results are discussed in the wider context of recent developments in understanding the evolution of resistance to pathogen infections and resistance management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号