首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell‐cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.  相似文献   

2.
Parasitism is a life strategy that has repeatedly evolved within the Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used to distinguish parasites based on the relative phylogenetic relationship of host and parasite. However, analyses using molecular phylogenetics indicate that nearly all red algal parasites infect within their taxonomic family, and a range of relationships exist between host and parasite. To date, all investigated adelphoparasites have lost their plastid, and instead, incorporate a host‐derived plastid when packaging spores. In contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a partial plastid genome from Leachiella pacifica. The H. mirabilis plastid shares more synteny with free‐living red algal plastids than that of C. polysiphoniae. Phylogenetic analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly supported clade of parasites, which retain their own plastid genomes, within the Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites (formerly adelphoparasites) to distinguish red algal parasites using a biological framework rather than taxonomic affiliation with their hosts.  相似文献   

3.
Secondary pit connections are common between cells of hosts and parasites in the widespread phenomenon of red algal parasitism. The DNA-specific fluorochrome 4′,-6-diamidino-2-phenylindole (DAPI) reveals that in host-parasite secondary pit connection (SPC) formation between the parasitic red alga Choreocolax polysiphoniae and its host Polysiphonia confusa, a nucleus and other cytoplasmic components of the parasite are delivered into the cytoplasm of a host cell. Host cells receive large numbers of parasite nuclei and these, apparently arrested in G1, are maintained intact in host cells for periods of several weeks. Within these enlarged, differentiated cells, starch accumulates and cytoplasmic organelles proliferate as the central vacuole decreases in size. Host nuclear DNA synthesis is stimulated in the infected host cell, resulting in an increase in the number of host nuclei, or an increase in DNA in each of the existing host nuclei (i.e. somatic polyploidy). Occasionally, infected host cells will recommence division and engender a new host branch. Microspectrofluorometry of nuclear DNA quantitatively confirms not only the identity and transfer of parasite nuclei to host cells, but also the transfer of parasite nuclei to other parasite cells. Measurements also reveal that the single nucleus of Choreocolax becomes progressively more polyploid as cells become larger and more highly differentiated. Secondary pit connection formation between Choreocolax and Polysiphonia provides the mechanism for the transfer of parasite genetic information (via the parasite nucleus and cytoplasm) into the host. The parasite nuclei may thereby control and redirect the physiology of the host for the benefit of the parasite.  相似文献   

4.
Over 100 species of red algae have been described as parasites on other red algae, but the majority show some degree of pigmentation. This raises the question of their parasitic status, especially their abilities to photosynthesize and their dependence on their host for fixed carbon. Are they considered parasites only based on morphological characters, for example, reduced size and secondary pit connection to the host? Translocation of nutrients from host to parasite have been shown for very few red algal parasites, and these were mostly unpigmented. This study investigated three pigmented red algal parasites (Rhodophyllis parasitica, Vertebrata aterrimophila and Pterocladiophila hemisphaerica) from New Zealand. We quantified their chlorophyll a content and also measured their PSII capacity using PAM fluorometry. All three parasites contained chlorophyll a. The parasites Rhodophyllis parasitica and Vertebrata aterrimophila were not able to photosynthesize and must therefore be fully nutritional dependent on their host. The parasite Pterocladiophila hemisphaerica was able to photosynthesize independently, but based on molecular characteristics we suggest that it relies on the host plastid to do photosynthesis. Our results support the parasitic status of all three species and highlights the necessity of more studies investigating the differences in host dependency in red algal parasites.  相似文献   

5.
In several groups of parasites including insect, flowering plant, fungal, and red algal parasites, morphological similarities of the parasites and their specific hosts have led to hypotheses that these parasites evolved from their hosts. But these conclusions have been criticized because the morphological features shared by parasite and host may be the result of convergent evolution. In this study, we examine the hypothesis, originally put forth by Setchell, that adelphoparasitic red algae, that is, parasitic red algae that are morphologically very similar to their hosts, evolved from their specific red algal hosts. Rather than comparing morphological features of parasites and hosts, small-subunit 18S nuclear ribosomal DNA and the internal transcribed spacer regions (ITSs) of the nuclear ribosomal repeat are compared for five parasites, their hosts, and related nonhosts from four red algal orders. These comparisons reveal that each of these adelphoparasites has evolved either directly from the host on which it is currently found, or it evolved from some other taxon that is closely related to the modern host. The parasites Gardneriella tuberifera, Rhodymeniocolax botryoides, and probably Gracilariophila oryzoides evolved from their respective hosts Sarcodiotheca gaudichaudii, Rhodymenia pacifica, and Gracilariopsis lemaneiformis, respectively. The parasite Faucheocolax attenuata evolved from either Fauchea laciniata or Fauchea fryeana and subsequently radiated onto the other host species. Presently this parasite is found on both hosts. Lastly, some parasitic genera such as Plocamiocolax are polyphyletic in their origins. A species of Plocamiocolax from an Antarctic Plocamium cartilagineum appears to have evolved from its host whereas the common Plocamiocolax pulvinata that occurs along the west coast of North America likely evolved from Plocamium violaceum and radiated secondarily onto its present day host, Plocamium cartilagineum.  相似文献   

6.
Malaria and related parasites retain a vestigial, but biosynthetically active, plastid organelle acquired far back in evolution from a red algal cell. The organelle appears to be essential for parasite transmission from cell to cell and carries the smallest known plastid genome. Why has this genome been retained? The genes it carries seem to be dedicated to the expression of just two "housekeeping" genes. We speculate that one of these, called ycf24 in plants and sufB in bacteria, is tied to an essential "dark" reaction of the organelle--fatty acid biosynthesis. "Ball-park" clues to the function of bacterial suf genes have emerged only recently and point to the areas of iron homeostasis, [Fe-S] cluster formation and oxidative stress. We present experimental evidence for a physical interaction between SufB and its putative partner SufC (ycf16). In both malaria and plants, SufC is encoded in the nucleus and specifies an ATPase that is imported into the plastid.  相似文献   

7.
The apicoplast is a distinctive organelle associated with apicomplexan parasites, including Plasmodium sp. (which cause malaria) and Toxoplasma gondii (the causative agent of toxoplasmosis). This unusual structure (acquired by the engulfment of an ancestral alga and retention of the algal plastid) is essential for long-term parasite survival. Similar to other endosymbiotic organelles (mitochondria, chloroplasts), the apicoplast contains proteins that are encoded in the nucleus and post-translationally imported. Translocation across the four membranes surrounding the apicoplast is mediated by an N-terminal bipartite targeting sequence. Previous studies have described a recombinant "poison" that blocks plastid segregation during mitosis, producing parasites that lack an apicoplast and siblings containing a gigantic, nonsegregating plastid. To learn more about this remarkable phenomenon, we examined the localization and processing of the protein produced by this construct. Taking advantage of the ability to isolate apicoplast segregation mutants, we also demonstrated that processing of the transit peptide of nuclear-encoded apicoplast proteins requires plastid-associated activity.  相似文献   

8.
Heme biosynthesis represents one of the most essential metabolic pathways in living organisms, providing the precursors for cytochrome prosthetic groups, photosynthetic pigments, and vitamin B(12). Using genomic data, we have compared the heme pathway in the diatom Thalassiosira pseudonana and the red alga Cyanidioschyzon merolae to those of green algae and higher plants, as well as to those of heterotrophic eukaryotes (fungi, apicomplexans, and animals). Phylogenetic analyses showed the mosaic character of this pathway in photosynthetic eukaryotes. Although most of the algal and plant enzymes showed the expected plastid (cyanobacterial) origin, at least one of them (porphobilinogen deaminase) appears to have a mitochondrial (alpha-proteobacterial) origin. Another enzyme, glutamyl-tRNA synthase, obviously originated in the eukaryotic nucleus. Because all the plastid-targeted sequences consistently form a well-supported cluster, this suggests that genes were either transferred from the primary endosymbiont (cyanobacteria) to the primary host nucleus shortly after the primary endosymbiotic event or replaced with genes from other sources at an equally early time, i.e., before the formation of three primary plastid lineages. The one striking exception to this pattern is ferrochelatase, the enzyme catalyzing the first committed step to heme and bilin pigments. In this case, two red algal sequences do not cluster either with the other plastid sequences or with cyanobacterial sequences and appear to have a proteobacterial origin like that of the apicomplexan parasites Plasmodium and Toxoplasma. Although the heterokonts also acquired their plastid via secondary endosymbiosis from a red alga, the diatom has a typical plastid-cyanobacterial ferrochelatase. We have not found any remnants of the plastidlike heme pathway in the nonphotosynthetic heterokonts Phytophthora ramorum and Phytophthora sojae.  相似文献   

9.
In response to a comment in this issue on our proposal of new terminology to distinguish red algal parasites, we clarify a few key issues. The terms adelphoparasite and alloparasite were previously used to identify parasites that infected close or distant relatives. However, most red algal parasites have only been studied morphologically, and molecular tools have shown that these binary terms do a poor job at representing the range of parasite–host relationships. We recognize the need to clarify inferred misconceptions that appear to be drawing from historical terminology to contaminate our new definitions. We did not intend to replace the term adelphoparasite with neoplastic parasites and the term alloparasites with archaeplastic parasites. Rather, we seek to establish new terms for discussing red algal parasites, based on the retention of a native plastid, a binary biological trait that is relatively easy to identify using modern methods and has biological implications for the interactions between a parasite and its host. The new terminology can better account for the spectrum of relationships and developmental patterns found among the many independently evolved red algal parasites, and it is intended to inspire new research, particularly the role of plastids in the survival and evolution of red algal parasites.  相似文献   

10.
Summary The fine structure of erythrocytic stages of Plasmodium knowlesi was compared with that of the same parasite isolated from its host cell by a saponin technique. Rhesus monkeys experimentally infected with Plasmodium knowlesi were the source of parasitized red cells. The erythrocytic stages of this Plasmodium showed all the organelles described in other mammalian forms; the nucleus lacked a typical nucleolus but contained a cluster of granules. P. knowlesi did not have protozoan-type mitochondria as do the avian and reptilian forms, but had double-membrane-bounded bodies as observed in other mammalian malarial parasites.The isolation procedure caused a slight swelling of the parasite, but in general, the structure and structural relationships of the parasite were preserved. However, the isolation technique gave a new insight into the connection of the host cell cytoplasm with the large, so-called food vacuoles of the parasite. The parasite freed from its host cell showed clear spaces where the large vacuoles had been. The content of these vacuoles had been removed together with the red cell cytoplasm. As the nature of the isolation procedure precluded any disruption of the parasite itself, these findings support our view that the vacuoles are not true food vacuoles. If these were true food vacuoles, they would be completely enclosed by a parasite membrane within the parasite cytoplasm. However, we have demonstrated that they represent extensions of host cell cytoplasm in direct communication with the rest of the red cell. The outer membrane surrounding the intra-erythrocytic parasites disappeared after isolation of the parasite from the host cell. This strongly suggested that the outer membrane is of host cell origin. The budding process of the merozoites from a schizont was also described and discussed.This paper is contribution No. 558 from the Army Research Program on Malaria and was supported in part by Research Grant AI 08970-01 from the United States Public Health Service.  相似文献   

11.
The metabolic inter-relationships between malarial parasites and their host erythrocytes are poorly understood. They have been investigated hitherto mostly by observing parasite behavior in erythrocyte variants, in metabolically altered erythrocytes, or in cell-free in vitro systems. We have studied the interconnection between the bioenergetic metabolism of host and parasite through compartment analysis of ATP in Plasmodium falciparum-infected human red blood cells, using Sendai virus-induced host cell lysis. ATP concentrations in host and parasite compartments were found to be equal. Inhibitors of mitochondrial activity reduce ATP levels to a similar extent in host and parasite compartments, although only the parasite contains functional mitochondria. It is shown that equalization of ATP levels is brought about by means of an adenylate translocator, probably localized at the parasite plasma membrane, in conjunction with adenylate kinase activity detected both in host and parasite compartments. The translocator is inhibited by compounds which are known to inhibit specifically the translocator of the inner membrane of mammalian mitochondria, with identical inhibitory constants. Addition of these inhibitors to intact infected cells causes a rapid depletion of ATP in the host compartment and a parallel increase in the parasite, suggesting that the parasite supplies ATP to its host cell rather than the reverse.  相似文献   

12.
Parasites have developed a variety of physiological functions necessary for existence within the specialized environment of the host. Regarding energy metabolism, which is an essential factor for survival, parasites adapt to low oxygen tension in host mammals using metabolic systems that are very different from that of the host. The majority of parasites do not use the oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis. In addition, all parasites have a life cycle. In many cases, the parasite employs aerobic metabolism during their free-living stage outside the host. In such systems, parasite mitochondria play diverse roles. In particular, marked changes in the morphology and components of the mitochondria during the life cycle are very interesting elements of biological processes such as developmental control and environmental adaptation. Recent research has shown that the mitochondrial complex II plays an important role in the anaerobic energy metabolism of parasites inhabiting hosts, by acting as quinol-fumarate reductase.  相似文献   

13.
Translocation of proteins across the multiple membranes of complex plastids.   总被引:18,自引:0,他引:18  
Secondary endosymbiosis describes the origin of plastids in several major algal groups such as dinoflagellates, euglenoids, heterokonts, haptophytes, cryptomonads, chlorarachniophytes and parasites such as apicomplexa. An integral part of secondary endosymbiosis has been the transfer of genes for plastid proteins from the endosymbiont to the host nucleus. Targeting of the encoded proteins back to the plastid from their new site of synthesis in the host involves targeting across the multiple membranes surrounding these complex plastids. Although this process shows many overall similarities in the different algal groups, it is emerging that differences exist in the mechanisms adopted.  相似文献   

14.
Parasitic red algae grow only on other red algae and have over 120 described species. Developmental studies in red algal parasites are few, although they have shown that secondary pit connections formed between parasite and host and proposed that this was an important process in successful parasitism. Furthermore, it was recorded that the transfer of parasite nuclei by these secondary pit connections led to different host cell effects. We used developmental studies to reconstruct early stages and any host cell effects of a parasite on Vertebrata aterrima. A mitochondrial marker (cox1) and morphological observations (light and fluorescence microscopy) were used to describe this new red algal parasite as Vertebrata aterrimophila sp. nov. Early developmental stages show that a parasite spore connects via secondary pit connections with a pericentral host cell after cuticle penetration. Developmental observations revealed a unique connection cell that grows into a ‘trunk-like’ structure. Host cell transformation after infection by the parasite included apparent increases in both carbohydrate concentrations and nuclear size, as well as structural changes. Analyses of molecular phylogenies and reproductive structures indicated that the closest relative of V. aterrimophila is its host, V. aterrima. Our study shows a novel developmental parasite stage (‘trunk-like’ cell) and highlights the need for further developmental studies to investigate the range of developmental patterns and host effects in parasitic red algae.  相似文献   

15.
Morphological similarities of many parasites and their hosts have led to speculation that some groups of plant, animal, fungal, and algal parasites may have evolved directly from their hosts. These parasites, which have been termed adelphoparasites in the botanical literature, and more recently, agastoparasites in the insect literature, may evolve monophyletically from one host and radiate secondarily to other hosts or, these parasites may arise polyphyletically, each arising from its own host. In this study we compare the internal transcribed spacer regions of the nuclear ribosomal repeats of species and formae specialis (host races) included in the red algal parasite genus Asterocolax with its hosts, which all belong to the Phycodrys group of the Delesseriaceae and with closely related nonhost taxa of the Delesseriaceae. These analyses reveal that species of Asterocolax have evolved polyphyletically. Asterocolax erythroglossi from the North Atlantic host Erythroglossum laciniatum appears to have evolved from its host, whereas taxa included in the north Pacific species Asterocolax gardneri have had two independent origins. Asterocolax gardneri from the host Polyneura latissima probably arose directly from this host. In contrast, all other A. gardneri formae specialis appear to have originated from either Phycodrys setchellii or P. isabelliae and radiated secondarily onto other closely related taxa of the Phycodrys group, including Nienburgia andersoniana and Anisocladella pacifica. Gamete crossing experiments confirm that A. gardneri from each host is genetically isolated from both its host, and from other A. gardneri and their hosts. Cross-infection experiments reveal that A. gardneri develops normally only on its natural host, although some abberrant growth may occur on alternate hosts. The ability of red algal parasites to radiate secondarily to other red algal taxa, where they may become isolated genetically and speciate, suggests that this process of speciation is not a “genetic dead end” but one that may give rise to related clusters of parasite species.  相似文献   

16.
A number of hypotheses exist to explain aggregated distributions, but they have seldom been used to investigate differences in parasite spatial distribution between native and introduced hosts. We applied two aggregation models, the negative binomial distribution and Taylor’s power law, to study the aggregation patterns of helminth populations from Liza haematocheilus across its native (Sea of Japan) and introduced (Sea of Azov) distribution ranges. In accordance with the enemy release hypothesis, we predicted that parasite populations in the introduced host range would be less aggregated than in the native host area, because aggregation is tightly constrained by abundance. Contrary to our expectation, aggregation of parasite populations was higher in the introduced host range. However, the analyses suggested that the effect of host introduction on parasite aggregation depends on whether parasite species, or higher level taxonomic groups, were acquired in or carried into the new area. The revealed similarity in the aggregation parameters of co-introduced monogeneans can be attributed to the repeatability and identity of the host–parasite systems. In contrast, the degree of aggregation differed markedly between regions for higher level taxa, which are represented by the native parasites in the Sea of Japan versus the acquired species in the Sea of Azov. We propose that the host species plays a crucial role in regulating infra-population sizes of acquired parasites due to the high rate of host-induced mortality. A large part of the introduced host population may remain uninfected due to their resistance to native naïve parasites. The core concept of our study is that the comparative analysis of aggregation patterns of parasites in communities and populations, and macroecological relationships, can provide a useful tool to reveal cryptic relationships in host–parasite systems of invasive hosts and their parasites.  相似文献   

17.
Apicomplexan species constitute a diverse group of parasitic protozoa, which are responsible for a wide range of diseases in many organisms. Despite differences in the diseases they cause, these parasites share an underlying biology, from the genetic controls used to differentiate through the complex parasite life cycle, to the basic biochemical pathways employed for intracellular survival, to the distinctive cell biology necessary for host cell attachment and invasion. Different parasites lend themselves to the study of different aspects of parasite biology: Eimeria for biochemical studies, Toxoplasma for molecular genetic and cell biological investigation, etc. The Plasmodium falciparum Genome Project contributes the first large-scale genomic sequence for an apicomplexan parasite. The Plasmodium Genome Database (http://PlasmoDB.org) has been designed to permit individual investigators to ask their own questions, even prior to formal release of the reference P. falciparum genome sequence. As a case in point, PlasmoDB has been exploited to identify metabolic pathways associated with the apicomplexan plastid, or 'apicoplast' - an essential organelle derived by secondary endosymbiosis of an alga, and retention of the algal plastid.  相似文献   

18.
Red algal parasites are common and have a unique type of development in which parasite nuclei are transferred to host cells and “control” host cell development. Previous phylogenetic studies have concentrated on parasites closely related to their hosts, termed adelphoparasites. A second set of parasites, usually classified in a different family or tribe from their host, termed alloparasites, have not been studied phylogenetically. This study concentrates on the wholly parasitic family, the Choreocolacaceae (Gigartinales). Using small subunit rDNA sequence data, we found that all the parasites studied are within the same family as their host. Our data support the placement of Holmsella, species of which parasitize Gracilaria and Gracilariopsis, in the order Gracilariales and suggest that Holmsella is an old parasitic genus. Most other species of the Choreocolacaceae parasitize species of the Rhodomelaceae. The one exception is the hyperparasitism between Harveyella mirabilis (Reinsch) F. Schmitz et Reinke (Rhodomelaceae) and the parasite Gonimophyllum skottsbergii Setchell (Delesseriaceae). The parasites Bostrychiocolax australis Zuccarello et West and Dawsoniocolax bostrychiae (Joly et Yamaguishi‐Tomita) Joly et Yamaguishi‐Tomita are placed within the tribe Bostrychiae as are their hosts. Harveyella mirabilis has a single origin and has switched hosts several times during its passage between the Atlantic and Pacific Oceans. Evidence does not support the continued recognition of the family Choreocolacaceae. Our results also indicate that the distinction between adelphoparasites and alloparasites is unwarranted, with a continuum between newly evolved parasites closely related to their hosts and parasites less closely related to their hosts.  相似文献   

19.
The co-evolution between hosts and parasites has long been recognized as a fundamental driver of macro-evolutionary patterns of diversification. The effect of co-differentiation on parasite diversification is, however, often confounded by underlying geographic patterns of host distribution. In order to disentangle the confounding effects of allopatric versus host speciation, the mitochondrial cytochrome b (cyt b) gene was sequenced in seventy individuals of the parasitic nematode genus Heligmosomoides sampled in the six Apodemus mice species common in the western Palearctic region. The nuclear internal transcribed spacers (ITS) 1 and 2 were also sequenced in fifteen parasites to confirm the mitochondrial data. All lineages differentiated according to a geographic pattern and independently from the sampled host species. This suggests that host speciation did not involve concurrent parasite speciation. However, the geographic distribution range of some parasite lineages mirrors that of A. sylvaticus lineages in SW Europe, and that of A. flavicollis lineages in the Balkans and in the Middle East. Thus, regional co-differentiation likely occurred between the parasite and the two sister Apodemus hosts in different parts of their distribution range. We suggest that differences in regional abundances of A. sylvaticus and A. flavicollis are responsible for generating this pattern of regional co-differentiation. This study highlights the importance of integrating both geography and biogeographic information from potential hosts to better understand their parasite phylogeography.  相似文献   

20.
Salomaki and Lane (2019) proposed a new terminology to group red algal parasites either as parasites containing their own (native) reduced plastid: “archaeplastic” (allied to the old designation “alloparasite”) or parasites that contain only a host plastid: “neoplastic” (similar to the older term “adelphoparasite”). We believe this is premature. There are examples that contradict their proposed grouping, and their proposal was based on work from the mid-1990s that should be re-evaluated. We also believe that grouping red algal parasites into two groups obscures both our lack of knowledge of these organisms and the diversity that is already seen in the few intensively studied parasites. Instead of making generalizations based on limited knowledge, further in-depth study should be encouraged and will be useful in understanding these intriguing organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号