首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We described a simple phase-shift fluorometer using continuous laser excitation. The laser enables the use of a transverse mode electrooptic modulator with a half-wave retardation voltage of about 200 V (in contrast to many kilovolts of longitudinal modulators) at frequencies up to 100 MHz. The modulated fluorescence signal is detected, after passing through a double monochromator, by a photomultiplier tube feeding a radio frequency (RF) tuned amplifier. THE RF phase is then determined by phase-sensitive detection using a double balanced mixer with the reference obtained from a PIN photodiode-turned amplifier combination which detects light split off from the main exciting beam. The laser and double monochromator allow the observation of modulated Raman solvent and Rayleigh scatterin, which are convenient for determining the zero reference phase.  相似文献   

2.
目前主要使用激光共聚焦扫描显微镜观察绿色荧光蛋白的表达,但需要昂贵的仪器并耗费大量时间。本研究开发了一种新型激光诱导的微流芯片检测系统来监测绿色荧光蛋白在枯草芽孢杆菌中的表达。该系统主要由激光装置、光路系统、微流控芯片、光电倍增管和计算机处理系统等5部分组成。对该系统的测试结果显示,随着诱导强度的增强监测信号峰也随之增强,并且与激光共聚焦显微镜观察的结果一致。利用该芯片系统能够快速准确地筛选和鉴定用绿色荧光蛋白作为标记的细胞克隆,可以替代PCR鉴定方法。但该系统仅仅能够监测表达强度,不能够满足蛋白定位等高水平研究,因此,该系统适合应用于环境的微生物监测、药物筛选和其他无需观察蛋白定位等研究。  相似文献   

3.
Images of multiply labeled fluorescent samples provide unique insights into the localization of molecules, cells, and tissues. The ability to image multiple channels simultaneously at high speed without cross talk is limited to a few colors and requires dedicated multichannel or multispectral detection procedures. Simpler microscopes, in which each color is imaged sequentially, produce a much lower frame rate. Here, we describe a technique to image, at high frame rate, multiply labeled samples that have a repeating motion. We capture images in a single channel at a time over one full occurrence of the motion then repeat acquisition for other channels over subsequent occurrences. We finally build a high-speed multichannel image sequence by combining the images after applying a normalized mutual information-based time registration procedure. We show that this technique is amenable to image the beating heart of a double-labeled embryonic quail in three channels (brightfield, yellow, and mCherry fluorescent proteins) using a fluorescence wide-field microscope equipped with a single monochrome camera and without fast channel switching optics. We experimentally evaluate the accuracy of our method on image series from a two-channel confocal microscope.  相似文献   

4.
5.
By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as “easy-STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a confocal modality. For this purpose, both the excitation and depletion laser beams pass through a commercially available segmented phase plate that creates the STED-doughnut light distribution in the focal plane, while leaving the excitation beam unaltered when implemented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent beads as reference were achieved with the wavelength combination of 635 nm excitation and 766 nm depletion. To evaluate the STED performance in biological systems, we compared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by labeling F-actin filaments in vitro as well as through immunofluorescence recordings of microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvolution approach and showed that images obtained from time-gated pulsed STED microscopy may benefit concerning the signal-to-background ratio, from the joint deconvolution of sub-images with different spatial information which were extracted from offline time gating.  相似文献   

6.
Fluorescent speckle microscopy (FSM) uses a small fraction of fluorescently labeled subunits to give macromolecular assemblies such as the cytoskeleton fluorescence image properties that allow quantitative analysis of movement and subunit turnover. We describe a multispectral microscope system to analyze the dynamics of multiple cellular structures labeled with spectrally distinct fluorophores relative to one another over time in living cells. This required a high-resolution, highly sensitive, low-noise, and stable imaging system to visualize the small number of fluorophores making up each fluorescent speckle, a means by which to switch between excitation wavelengths rapidly, and a computer-based system to integrate image acquisition and illumination functions and to allow a convenient interface for viewing multispectral time-lapse data. To reduce out-of-focus fluorescence that degrades speckle contrast, we incorporated the optical sectioning capabilities of a dual-spinning-disk confocal scanner. The real-time, full-field scanning allows the use of a low-noise, fast, high-dynamic-range, and quantum-efficient cooled charge-coupled device (CCD) as a detector as opposed to the more noisy photomultiplier tubes used in laser-scanning confocal systems. For illumination, our system uses a 2.5-W Kr/Ar laser with 100-300mW of power at several convenient wavelengths for excitation of few fluorophores in dim FSM specimens and a four-channel polychromatic acousto-optical modulator fiberoptically coupled to the confocal to allow switching between illumination wavelengths and intensity control in a few microseconds. We present recent applications of this system for imaging the cytoskeleton in migrating tissue cells and neurons.  相似文献   

7.
We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or "blinking". Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of alpha5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection.  相似文献   

8.
We report the development of a multichannel microscopy for whole‐slide multiplane, multispectral and phase imaging. We use trinocular heads to split the beam path into 6 independent channels and employ a camera array for parallel data acquisition, achieving a maximum data throughput of approximately 1 gigapixel per second. To perform single‐frame rapid autofocusing, we place 2 near‐infrared light‐emitting diodes (LEDs) at the back focal plane of the condenser lens to illuminate the sample from 2 different incident angles. A hot mirror is used to direct the near‐infrared light to an autofocusing camera. For multiplane whole‐slide imaging (WSI), we acquire 6 different focal planes of a thick specimen simultaneously. For multispectral WSI, we relay the 6 independent image planes to the same focal position and simultaneously acquire information at 6 spectral bands. For whole‐slide phase imaging, we acquire images at 3 focal positions simultaneously and use the transport‐of‐intensity equation to recover the phase information. We also provide an open‐source design to further increase the number of channels from 6 to 15. The reported platform provides a simple solution for multiplexed fluorescence imaging and multimodal WSI. Acquiring an instant focal stack without z‐scanning may also enable fast 3‐dimensional dynamic tracking of various biological samples.   相似文献   

9.
10.
Summary For studies on cathodoluminescence, we equipped a scanning electron microscope with a prism spectrometer and sensitive photomultiplier. The apparatus is described and our initial results are presented on the analyse of cathodoluminescence.The material observed primarily involved studies of immunofluorescent specimens. Human lymphocytes were labelled with a fluorescent antibody and cryosections of rat kidney with Masugi nephritis were labelled with a fluorescent specific antibody. Our apparatus permitted monochromatic imaging of cathodoluminescence emissions and resulted in much improved micrographs. Some possible improvements of the technique are discussed.  相似文献   

11.
For studies on cathodoluminescence, we equipped a scanning electron microscope with a prism spectrometer and sensitive photomultiplier. The apparatus is described and our initial results are presented on the analyse of cathodoluminescence. The material observed promarily involved studies of immunofluorescent specimens. Humal lymphocytes were labelled with a fluorescent antibody and cryosections of rat kidney with Masugi nephritis were labelled with a fluorescent specific antibody. Our apparatus permitted monochromatic imaging of cathodoluminescence emissions and resulted in much improved micrographs. Some possible improvements of the technique are discussed.  相似文献   

12.
OBJECTIVE: To demonstrate that cellular preparations requiring color analysis of different domains stained by molecular cytogenetic methods (fluorescence in situ hybridization) can be processed by spectral analysis of fluorescent emissions by either factor analysis of medical image sequences (FAMIS) or a META confocal configuration to isolate fluorescent probes. STUDY DESIGN: Three-dimensional sequences of images obtained by spectral analysis in a META confocal microscope (Carl Zeiss SAS, Jena, Germany) were analyzed by META processing and the FAMIS algorithm, which provides factor curves. META and factor images were then the result of image-processing methods that cover emission spectra. RESULTS: Factor curves and factor or META images can help to analyze targets inside nuclei. CONCLUSION: It is possible to process preparations containing numerous spots on different colors to differentiate stained targets and to improve visualization and detection.  相似文献   

13.
An epiillumination microscope objective slit-scan flow system has been fabricated utilizing two dimensional slit scanning with hydrodynamic sample stream focussing. Low resolution (4 micron) analysis of cellular fluorescence is facilitated by the definition of a stabilized flow plane through hydrodynamic focussing. Coincidence of the region of stabilized flow with the focal plane of the microscope objective will allow for the collection and subsequent imaging of fluorescence from cells oriented along this plane. Two orthogonal slit-scan contours are generated as a cell traverses the excitation region. It is hoped that the need for a three dimensional system will be precluded by preferential orientation of the cells in the region of stabilized flow. Cellular fluorescence is collected by a high numerical aperture epiillumination optical system and imaged onto two orthogonal slits. Two photomultiplier tubes are used to detect fluorescence. It is anticipated that the epiillumination microscope objective slit-scan flow system will be used with a variety of fluorescent stains and markers, as well as extended to the research of light scattered by cells. (Steen, H.B., Cytometry 1:26-31, 1980.  相似文献   

14.
The behavior of confined colloidal suspensions with attractive interparticle interactions is critical to the rational design of materials for directed assembly1-3, drug delivery4, improved hydrocarbon recovery5-7, and flowable electrodes for energy storage8. Suspensions containing fluorescent colloids and non-adsorbing polymers are appealing model systems, as the ratio of the polymer radius of gyration to the particle radius and concentration of polymer control the range and strength of the interparticle attraction, respectively. By tuning the polymer properties and the volume fraction of the colloids, colloid fluids, fluids of clusters, gels, crystals, and glasses can be obtained9. Confocal microscopy, a variant of fluorescence microscopy, allows an optically transparent and fluorescent sample to be imaged with high spatial and temporal resolution in three dimensions. In this technique, a small pinhole or slit blocks the emitted fluorescent light from regions of the sample that are outside the focal volume of the microscope optical system. As a result, only a thin section of the sample in the focal plane is imaged. This technique is particularly well suited to probe the structure and dynamics in dense colloidal suspensions at the single-particle scale: the particles are large enough to be resolved using visible light and diffuse slowly enough to be captured at typical scan speeds of commercial confocal systems10. Improvements in scan speeds and analysis algorithms have also enabled quantitative confocal imaging of flowing suspensions11-16,37. In this paper, we demonstrate confocal microscopy experiments to probe the confined phase behavior and flow properties of colloid-polymer mixtures. We first prepare colloid-polymer mixtures that are density- and refractive-index matched. Next, we report a standard protocol for imaging quiescent dense colloid-polymer mixtures under varying confinement in thin wedge-shaped cells. Finally, we demonstrate a protocol for imaging colloid-polymer mixtures during microchannel flow.  相似文献   

15.
We describe a custom one-photon (confocal) and two-photon all-digital (photon counting) laser scanning microscope. The confocal component uses two avalanche photodiodes (APDs) as the fluorescence detector to achieve high sensitivity and to overcome the limited photon counting rate of a single APD ( approximately 5 MHz). The confocal component is approximately nine times more efficient than our commercial confocal microscope (fluorophore fluo 4). Switching from one-photon to two-photon excitation mode (Ti:sapphire laser) is accomplished by moving a single mirror beneath the objective lens. The pulse from the Ti:sapphire laser is 109 fs in duration at the specimen plane, and average power is approximately 5 mW. Two-photon excited fluorescence is detected by a fast photomultiplier tube. With a x63 1.4 NA oil-immersion objective, the resolution of the confocal system is 0.25 microm laterally and 0.52 microm axially. For the two-photon system, the corresponding values are 0.28 and 0.82 microm. The system is advantageous when excitation intensity must be limited, when fluorescence is low, or when thick, scattering specimens are being studied (with two-photon excitation).  相似文献   

16.
A new microspectrofluorometer has been developed that combines a photometric fluorescence microscope with an optical multichannel analyzer. This instrument provides fluorescence emission spectra of biological materials by detecting the entire spectrum simultaneously in real time. These spectra are subsequently recorded and corrected so as to identify the fluorescent reaction products or to test whether fluorescent cytochemical probes bind to the expected substrate within cells. The procedures and advantages of optical multichannel analysis are described, and an application of microspectrofluorometry to acriflavine-Feulgen cytochemistry is given.  相似文献   

17.
The reproducibility of three-dimensional hydrogel surfaces based on polyurethane, poly(vinyl alcohol), and polyacrylamide (HydroGel) with respect to scanning mode (confocal vs nonconfocal), alignment (circular vs irregular), and influence of fluorescent background was investigated. It is demonstrated that, if even probe spots are provided, fluorescence intensities measured at the same photomultiplier tube gain are similar for confocal and nonconfocal scanning modes. Uneven probe spots, however, cause reduced fluorescence with confocal scanners, greater spot-to-spot variation, and higher degrees of intra- and interexperimental variability (%CV among three experiments). By using irregular instead of circular spot alignment, reproducibility (%CV) is improved for good- and bad-quality spots, in the latter case by up to three times as much. In addition, circularity can be used together with the mean-median correlation of pixel intensities as a quality measure.  相似文献   

18.
The confocal fluorescence microscope has become a popular tool for life sciences researchers, primarily because of its ability to remove blur from outside of the focal plane of the image. Several different kinds of confocal microscopes have been developed, each with advantages and disadvantages. This article will cover the grid confocal, classic confocal laser-scanning microscope (CLSM), the resonant scanning-CLSM, and the spinning-disk confocal microscope. The way each microscope technique works, the best applications the technique is suited for, the limitations of the technique, and new developments for each technology will be presented. Researchers who have access to a range of different confocal microscopes (e.g., through a local core facility) should find this paper helpful for choosing the best confocal technology for specific imaging applications. Others with funding to purchase an instrument should find the article helpful in deciding which technology is ideal for their area of research.  相似文献   

19.
By making only minor modifications, we adapted a conventional confocal beam-scanning laser microscope for the recording of UV-excited fluorescence. The major, and most expensive, change is that we coupled an external UV argon ion laser, providing the wavelengths 334, 351 and 364 nm, to the microscope scanner. We also replaced some optical components to obtain improved transmission and reflection properties in the UV. Only easily obtainable and inexpensive off-the-shelf components were used. The most serious problem encountered was the chromatic aberration of the microscope objective when using both UV and visible wavelengths. This is of no consequence in conventional microscopy where good imaging properties are important only in the visible region. In confocal microscopy on the other hand, good imaging properties are necessary for both the exciting and fluorescent light. Rather than having new optics designed, we tried with simple means to reduce the effects of the chromatic aberration to a tolerable level. This was done by mechanical adjustments in the ray-path. In addition we also tested two mirror objectives, which are inherently free from chromatic aberrations. However, such objectives have rather limited numerical apertures and are not of the immersion type. Their value in biomedical applications is therefore limited.The objective most frequently used in our experiments was a 63/1.25 oil-immersion fluorite. Without any compensation this objective had a depth resolution in UV-excited confocal fluorescence that was an order of magnitude worse than when using visible-light excitation. The useful field of view was also very small due to lateral chromatic aberration. By simple means we managed to improve the depth resolution by a factor of 4.4, and at the same time increase the useful field of view substantially. Still, the depth resolution was worse than what is obtained using visible light excitation. We think this is due to the fact that after compensation the objective is working with an incorrect tube length.Using the modified instrument, we recorded specimens labelled with AMCA and Fluoro-Gold, obtaining 1.5 μm thick optical sections.  相似文献   

20.
The availability of high-speed, two-dimensional (2-D) confocal microscopes and the expanding armamentarium of fluorescent probes presents unprecedented opportunities and new challenges for studying the spatial and temporal dynamics of cellular processes. The need to remove subjectivity from the detection process, the difficulty of the human eye to detect subtle changes in fluorescence in these 2-D images, and the large volume of data produced by these confocal microscopes call for the need to develop algorithms to automatically mark the changes in fluorescence. These fluorescence signal changes are often subtle, so the statistical estimate of the likelihood that the detected signal is not noise is an integral part of the detection algorithm. This statistical estimation is fundamental to our new approach to detection; in earlier Ca(2+) spark detectors, this statistical assessment was incidental to detection. Importantly, the use of the statistical properties of the signal local to the spark, instead of over the whole image, reduces the false positive and false negative rates. We developed an automatic spark detection algorithm based on these principles and used it to detect sparks on an inhomogeneous background of transverse tubule-labeled rat ventricular cells. Because of the large region of the cell surveyed by the confocal microscope, we can detect a large enough number of sparks to measure the dynamic changes in spark frequency in individual cells. We also found, in contrast to earlier results, that cardiac sparks are spatially symmetric. This new approach puts the detection of fluorescent signals on a firm statistical foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号