首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
1. Invertebrate herbivory was studied in twenty-eight populations of the submerged macrophyte Potamogeton perfoliatus in Danish streams and lakes in mid-June. All populations but one experienced invertebrate herbivory and loss ranged from 0 to 11.9% of leaf area among populations. Loss generally increased with leaf age towards the base of the plants, and young apical leaves were rarely damaged. 2. Herbivory loss was significantly higher in streams (mean 5.0%) than in lakes (mean 2.2%), but varied greatly among populations within the same stream or lake and was not correlated to physico-chemical site characteristics, size or density of plant population, or leaf N and P content. High levels of invertebrate herbivory were therefore not associated with certain types of streams or lakes. 3. High herbivore biomass relative to abundance of plants was conducive to high loss. In streams, the biomass of the trichopteran Anabolia nervosa accounted for 50% of the variability in loss. No single species appeared to be equally important in lakes, although loss was correlated to the biomass of the chrysomelid beetle Macroplea appendiculata. Obligate herbivores, such as lepidopteran larvae, apparently exerted little damage on P. perfoliatus, and leaf mining and channelization from specialist feeders were negligible. It is concluded that shredders acting as facultative herbivores were the most important invertebrate herbivores on P. perfoliatus in Danish freshwaters.  相似文献   

2.
3.
Herbivory of invertebrates on submerged macrophytes from Danish freshwaters   总被引:5,自引:0,他引:5  
1. Invertebrate herbivory on submerged freshwater macrophytes, measured as per cent leaf area lost, was determined for sixteen species and forty-two populations of macrophytes during peak summer biomass in Danish streams and lakes. 2. All seventeen Potamogeton populations and seventeen of the remaining twenty-five non-Potamogeton populations were grazed. Species of Potamogeton were significantly more heavily grazed (mean 4.2%) than non-Potamogeton species (mean 0.8%). Herbivory losses were not significantly different between stream (mean 2.4%) and lake populations (mean 1.9%). Wide ranges in herbivory loss were observed between species from the same locality and within species from different localities. The location of main damage to either old or young leaves was not species specific but varied among localities. Additional data for four macrophyte populations showed that herbivory loss had a strong seasonal variation (e.g. 1.0–26.3% for Potamogeton perfoliatus), with maximum losses during May-June. 3. Although the mean defoliation percentages were low during the period of maximum macrophyte biomass, they were not systematically lower than encountered for terrestrial plants.  相似文献   

4.
Previous investigations have shown that macrophyte biomass can be substantially reduced by invertebrate herbivores but have not provided evidence for the links between the magnitude of the observed damage and the densities of herbivores. The results of this study support the hypothesis that the abundant occurrence of the epiphytic generalist herbivores may result in their cumulative consumption which, in turn, can be regarded as the mechanism responsible for often observed relatively high level of herbivory on freshwater macrophytes. The percentage of Elodea sp. biomass consumed by invertebrates was estimated for six European lakes, based on analysis of gut contents, daily rations and the density of epiphytic herbivores. Although the daily ration of these invertebrates when feeding upon Elodea averaged only 14.6% of their dry mass, their biomass was relatively high (from 0.163 to 1.161 g DW per 100 g DW plant). The estimated percentage of Elodea biomass consumed during one summer month by epiphytic invertebrates ranged from 0.5 to 5.9%. These values, after extrapolating to the whole growing season would mean that the biomass of Elodea lost to herbivory was between about 2 and 23%, an estimate which are within the range of consumption reported by other authors.  相似文献   

5.
Herbivory was measured monthly for 2 years on leaves of permanently marked replicate branches in the canopies of five Australian rainforest tree species. Variability in insect grazing activities was evident with respect to several factors:
  • 1 leafage — young leaves were preferred over older leaf tissue:
  • 2 height — leaves closer to ground level were more heavily grazed:
  • 3 light — shade leaves were preferred to sun leaves:
  • 4 time — grazing was intense during spring and summer months, and almost negligible during autumn and winter, but was cumulatively similar between the 2 years:
  • 5 space — grazing was extremely variable on small spatial scales such as between individual leaves and branches, but similar where hundreds of leaves were pooled on larger scales between individual canopies and among geographically different sites:
  • 6 tree abundance — grazing was heavier at sites where a tree species was common than where it was rare:
  • 7 host tree species.
Long term observations resulted in higher but more accurate estimates of herbivory since it was possible to quantify losses of leaves totally eaten, an event not accounted for infield methods of discrete sampling whereby leaves are merely harvested and measured for area missing. Variability in herbivory is discussed in terms of plant-insect phenologies, plant defences, successional status of tree species, and insect behaviour.  相似文献   

6.
The relationship between development of light leaf spot and yield loss in winter oilseed rape was analysed, initially using data from three experiments at sites near Aberdeen in Scotland in the seasons 1991/92, 1992/93 and 1993/94, respectively. Over the three seasons, single-point models relating yield to light leaf spot incidence (% plants with leaves with light leaf spot) at GS 3.3 (flower buds visible) generally accounted for more of the variance than single-point models at earlier or later growth stages. Only in 1992/93, when a severe light leaf spot epidemic developed on leaves early in the season, did the single-point model for disease severity on leaves at GS 3.5/4.0 account for more of the variance than that for disease incidence at GS 3.3. In 1991/92 and 1992/3, when reasonably severe epidemics developed on stems, the single-point model for light leaf spot incidence (stems) at GS 6.3 accounted for as much of the variance. Two-point (disease severity at GS 3.3 and GS 4.0) and AUDPC models (disease incidence/severity) accounted for more of the variance than the single-point model based on disease incidence at GS 3.3 in 1992/93 but not in the other two seasons. Therefore, a simple model using the light leaf spot incidence at GS 3.3 (x) as the explanatory variable was selected as a predictive model to estimate % yield loss (yr): yr= 0.32x– 0.57. This model fitted all three data sets from Scotland, When data sets from Rothamsted, Rosemaund and Thurloxton in England were used to test it, this single-point predictive model generally fitted the data well, except when yield loss was clearly not related to occurrence of light leaf spot. However, the regression lines relating observed yield loss to light leaf spot incidence at GS 3.3 often had smaller slopes than the line produce, by the model based on Scottish data.  相似文献   

7.
  • 1 Cross‐effects between a herbivorous insect and a phytopathogenic fungus on their common host plant were examined. Specifically, we addressed the questions whether (i) infection of Chinese cabbage leaves by the fungus Alternaria brassicae affects the development and host selection behaviour of the leaf beetle Phaedon cochleariae and (ii) whether herbivory influences host suitability of Chinese cabbage for A. brassicae.
  • 2 Feeding on fungus‐infected leaves prolonged larval development and reduced pupal weight of P. cochleariae. Adult beetles avoided feeding and egg deposition on fungus‐infected leaves. In contrast to these local effects, no systemic effect of phytopathogenic infection on the herbivore was detected.
  • 3 Herbivory did not influence fungal growth neither locally nor systemically.
  • 4 Thus, our results demonstrate an asymmetric relationship between herbivore and fungus. Whereas herbivory had no visible impact on fungal growth, fungal infection of the plant induced local resistance against P. cochleariae.
  相似文献   

8.
Abstract.
  • 1 We examined the effects of variation in the timing of spring leaf production and autumn leaf fall on the survival, mortality and abundance of Cameraria hamadryadella on Quercus alba and Q.macrocarpa.
  • 2 We monitored and manipulated the timing of foliation on field and potted Q.alba trees and observed the abundance of C.hamadryadella on those trees. We also monitored and manipulated the timing of leaf fall on Q.alba and Q.macrocarpa trees in the field and observed its effects on survival, mortality and abundance of C.hamadryadella.
  • 3 Variation in the timing of spring leaf production has no effect on C. hamudryadella abundance. However, a warm winter and spring in 1991 led to accelerated development and the imposition of a facultative third generation in one out of ten years of observation.
  • 4 In 1989, leaves fell relatively early and leaf fall in the autumn accounted for more than 50% of the mortality of C.hamudryadella. in 1990 and 1991 leaves fell relatively late and leaf fall induced mortality was substantially reduced and overwinter survival was markedly increased.
  • 5 The abundance of C.hamadryadella remained constant in the spring and summer of 1990 following the previous autumn's relatively early leaf fall, but increased by 10-fold in the spring of 1991 following the relatively late leaf fall of autumn 1990. The abundance of C.hamadryadella also increased 4-fold between the summer of 1991 and the spring of 1992 after another autumn of relatively late leaf fall. We attribute these increases in abundance in part to reduced mortality because of later leaf fall.
  • 6 Variation in the timing of autumn leaf fall may be responsible for initiating outbreaks of C.hamadryadella.
  相似文献   

9.
The herbivore assemblage, intensity of herbivory and factors determining herbivory levels on the mangrove Kandelia obovata (previously K. candel, Rhizophoraceae) were studied over a 13-month period at two forests with contrasting growing conditions in Hong Kong. Mai Po was part of an eutrophic embayment in the Pearl River estuary and generally offered more favourable conditions for mangrove growth, whereas Ting Kok had a rocky substratum and oceanic salinity. Twenty-four insect herbivore species were recorded on K. obovata, with lepidopteran larvae that consume leaf lamina being the dominant species. While leaf litter production was similar at the two forests, herbivory level at Mai Po (mean = 3.9% in terms of leaf area loss) was more severe than that at Ting Kok (mean = 2.3%). Peak herbivory levels were found in summer at both locations (6.5% for Mai Po and 3.8% for Ting Kok). Young leaves of K. obovata at both locations were generally preferred by the herbivores from the period of late spring to summer. Concentrations of most feeding deterrents (ash, crude fibre, and total soluble tannins) were significantly higher in both young and mature leaves at Ting Kok, whereas leaf nutrients (total nitrogen and water) were the same at the two sites. Young leaves at Ting Kok contained about 30% more tannins than their counterparts at Mai Po. Significant differences in leaf chemistry also existed between young and mature leaves at either site. The differences were concomitant with the observed patterns of leaf herbivory on K. obovata, and suggest a potential relationship between environmental quality and plant defence against herbivory.  相似文献   

10.
  • Identifying the mechanisms of compensation to insect herbivory remains a major challenge in plant biology and evolutionary ecology. Most previous studies have addressed plant compensatory responses to one or two levels of insect herbivory, and the underlying traits mediating such responses remain elusive in many cases.
  • We evaluated responses associated with compensation to multiple intensities of leaf damage (0% control, 10%, 25%, 50%, 75% of leaf area removed) by means of mechanical removal of foliar tissue and application of a caterpillar (Spodoptera exigua) oral secretions in 3‐month‐old wild cotton plants (Gossypium hirsutum). Four weeks post‐treatment, we measured plant growth and multiple traits associated with compensation, namely: changes in above‐ and belowground, biomass and the concentration of nutrients (nitrogen and phosphorus) and non‐structural carbon reserves (starch and soluble sugars) in roots, stems and leaves.
  • We found that wild cotton fully compensated in terms of growth and biomass allocation when leaf damage was low (10%), whereas moderate (25%) to high leaf damage in some cases led to under‐compensation. Nonetheless, high levels of leaf removal (50% and 75%) in most cases did not cause further reductions in height and allocation to leaf and stem biomass relative to low and moderate damage. There were significant positive effects of leaf damage on P concentration in leaves and stems, but not roots, as well as a negative effect on soluble sugars in roots.
  • These results indicate that wild cotton fully compensated for a low level of leaf damage but under‐compensated under moderate to high leaf damage, but can nonetheless sustain growth despite increasing losses to herbivory. Such responses were possibly mediated by a re‐allocation of carbohydrate reserves from roots to shoots.
  相似文献   

11.
  • Melampyrum pratense is an annual root‐hemiparasitic plant growing mostly in forest understorey, an environment with unstable light conditions. While photosynthetic responses of autotrophic plants to variable light conditions are in general well understood, light responses of root hemiparasites have not been investigated.
  • We carried out gas exchange measurements (light response and photosynthetic induction curves) to assess the photosynthetic performance of M. pratense in spring and summer. These data and recorded light dynamics data were subsequently used to model carbon balance of the hemiparasite throughout the entire growth season.
  • Summer leaves had significantly lower rates of saturated photosynthesis and dark respiration than spring leaves, a pattern expected to reflect the difference between sun‐ and shade‐adapted leaves. However, even the summer leaves of the hemiparasite exhibited a higher rate of light‐saturated photosynthesis than reported in non‐parasitic understorey herbs. This is likely related to its annual life history, rare among other understorey herbs. The carbon balance model considering photosynthetic induction still indicated insufficient autotrophic carbon gain for seed production in the summer months due to limited light availability and substantial carbon loss through dark respiration.
  • The results point to potentially high importance of heterotrophic carbon acquisition in M. pratense, which could be of at least comparable importance as in other mixotrophic plants growing in forests – mistletoes and partial mycoheterotrophs. It is remarkable that despite apparent evolutionary pressure towards improved carbon acquisition from the host, M. pratense retains efficient photosynthesis and high transpiration rate, the ecophysiological traits typical of related root hemiparasites in the Orobanchaceae.
  相似文献   

12.
13.
To evaluate the responses of Quercus crispula and Quercus dentata to herbivory, their leaves were subjected to simulated herbivory in early spring and examined for the subsequent changes in leaf traits and attacks by chewing herbivores in mid summer. In Quercus crispula, nitrogen content per area was higher in artificially damaged leaves than in control leaves. This species is assumed to increase the photosynthetic rate per area by increasing nitrogen content per area to compensate leaf area loss. In Quercus dentata, nitrogen content per area did not differ between artificially damaged and control leaves, while nitrogen content per mass was slightly lower in artificially damaged leaves. The difference in their responses can be attributable to the difference in the architecture of their leaves and/or the severeness of herbivory. The development of leaf area from early spring to mid summer was larger in artificially damaged leaves than in control leaves in both species, suggesting the compensatory response to leaf area loss. Leaf dry mass per unit area was also larger in artificially damaged leaves in both species, but the adaptive significance of this change is not clear. In spite of such changes in leaf traits, no difference was detected in the degree of damage by chewing herbivores between artificially damaged and controlled leaves in both species.  相似文献   

14.
15.
  1. Lupinus nootkatensis is an exotic plant species that has been used for large‐scale sowing all around Iceland for land reclamation of eroded surfaces protected from livestock grazing.
  2. Until the early 1990s, L. nootkatensis was free from any significant arthropod herbivory in Iceland, whereas, after 1991, many outbreaks of native insect species, primarily Ceramica pisi and Eupithecia satyrata, have been recorded. These outbreaks have caused repeated total defoliation of extensive areas of L. nootkatensis, although the effects on its development are mostly unknown.
  3. We studied the effect of: (i) reduced herbivory; (ii) increased herbivory; and (iii) simulated increased herbivory, compared with (iv) unmanipulated herbivory, on defoliation and seed production of L. nootkatensis in a 3‐year field study within two sites at contrasting ages and successional stages.
  4. The results obtained showed that: (i) seed production across all treatments was negatively related to defoliation; (ii) reduced herbivory had a positive effect on the number of flowering stems and seed yield; and (iii) these effects depended on age and/or the successional stage because they were only significant in the older L. nootkatensis site.
  5. These findings indicate that arthropod herbivory may affect the invasiveness of L. nootkatensis in Iceland by reducing the seed production and the spatial distribution rate of late successional lupin communities.
  相似文献   

16.
Above‐ground herbivory is ubiquitous in terrestrial ecosystems, yet its impacts on below‐ground processes and consequences for plants remain ambiguous. To examine whether physiological responses of individual trees may potentially modify soil nutrient availability, we subjected Fagus sylvatica L. (European beech) and Abies alba Mill. (silver fir) to simulated foliar herbivory over two growing seasons. Above‐ground herbivory enhanced N mineralization and inorganic N availability in the soil. The total input of C from the plant roots to the soil is not known; however, carbon sequestration in the soil, measured using stable isotopic techniques, was unaffected by herbivory. Fagus responded to herbivory by producing larger leaves, with increased photosynthetic capacity and N content, which largely compensated for the loss of biomass; Abies exhibited no such response. We conclude that despite large interspecific differences in the growth response, tree physiological responses to foliar herbivory are capable of directly modifying soil biological processes.  相似文献   

17.
This study describes experimental herbivory and detritivory of three common native aquatic macrophyte species by the introduced Mozambique tilapia Oreochromis mossambicus (Peters) (Pisces: Cichlidae), and its physiological response to their consumption. There was a highly significant effect of fish herbivory on plant weight for each of the macrophyte species, but this effect was not influenced by any preference for periphyton. Despite the herbivory, there was a highly significant loss of fish body weight across all plant species and weight could only be maintained by supplementary feeding of a high protein fish flake. These results suggest that despite eating these plants, an alternative food resource may be needed for survival and may trigger trophic plasticity in O. mossambicus.  相似文献   

18.
19.
Benthic macroinvertebrates associated with four species of macrophytes (Nymphoides peltata, Ceratophyllum demersum, Polygonum amphibium and Carex sp.) were investigated during two growing seasons (2001 and 2002) in the slow-flowing Čonakut Channel in the Kopački rit Nature Park in Croatia. A total of 31 macroinvertebrate taxa were found. C. demersum, a submerged plant with dissected leaves, supported the highest macroinvertebrate abundance, almost seven times more than N. peltata, a floating plant with undissected leaves, which harboured the lowest abundance during the research period. Chironomidae larvae (50–83%) and Oligochaeta (14–46%) were the most abundant groups recorded on all macrophyte species. Water-level fluctuation, because of its influence on the appearance and growth of aquatic vegetation, and the trophic state of water within the macrophyte stands seemed to be the main factors which affected the taxonomic composition and abundance of macroinvertebrates.  相似文献   

20.
Abstract.
  • 1 The response of different clones of sand-dune willow, Salix cordata, to herbivory by a specialist herbivore, Altica subplicata, was studied in three glasshouse experiments. Plants were caged and exposed to three herbivory treatments: no beetles, low number of beetles, and high number of beetles.
  • 2 Plants consistently had significantly higher growth rates in the absence of herbivory than under conditions of low or high herbivory (1.5–6 times higher).
  • 3 Herbivore treatment influenced mortality from drought stress; more plants from the low and high herbivory treatments (40% and 80%) died from drought stress than did control plants (0%).
  • 4 Clone genotype significantly influenced growth rates and the susceptibility of plants to drought stress. However, clones showed similar growth responses to herbivory, suggesting a lack of genetic variation in tolerance or resistance to herbivory.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号