首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional, structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering). For their part, induced pluripotent stem cells have recently been shown to also play a significant role in the fields of cell therapy and tissue engineering. Hemophilia is optimally suited for advanced therapies owing to the fact that, as a monogenic condition, it does not require very high expression levels of a coagulation factor to reach moderate disease status. As a result, significant progress has been possible with respect to these kinds of strategies, especially in the fields of gene therapy (by using viral and non-viral vectors) and cell therapy (by means of several types of target cells). Thus, although still considered a rare disorder, hemophilia is now recognized as a condition amenable to gene therapy, which can be administered in the form of lentiviral and adeno-associated vectors applied to adult stem cells, autologous fibroblasts, platelets and hematopoietic stem cells; by means of non-viral vectors; or through the repair of mutations by chimeric oligonucleotides. In hemophilia, cell therapy approaches have been based mainly on transplantation of healthy cells (adult stem cells or induced pluripotent cell-derived progenitor cells) in order to restore alterations in coagulation factor expression.  相似文献   

2.
Within the vascular endothelial growth factor (VEGF) family of five subtypes, VEGF165 secreted by endothelial cells has been identified to be the most active and widely distributed factor that plays a vital role in courses of angiogenesis, vascularization and mesenchymal cell differentiation. Hair follicle stem cells (HFSCs) can be harvested from the bulge region of the outer root sheath of the hair follicle and are adult stem cells that have multi‐directional differentiation potential. Although the research on differentiation of stem cells (such as fat stem cells and bone marrow mesenchymal stem cells) to the endothelial cells has been extensive, but the various mechanisms and functional forms are unclear. In particular, study on HFSCs’ directional differentiation into vascular endothelial cells using VEGF165 has not been reported. In this study, VEGF165 was used as induction factor to induce the differentiation from HFSCs into vascular endothelial cells, and the results showed that Notch signalling pathway might affect the differentiation efficiency of vascular endothelial cells. In addition, the in vivo transplantation experiment provided that HFSCs could promote angiogenesis, and the main function is to accelerate host‐derived neovascularization. Therefore, HFSCs could be considered as an ideal cell source for vascular tissue engineering and cell transplantation in the treatment of ischaemic diseases.  相似文献   

3.
End‐stage liver disease can be the termination of acute or chronic liver diseases, with manifestations of liver failure; transplantation is currently an effective treatment for these. However, transplantation is severely limited due to the serious lack of donors, expense, graft rejection and requirement of long‐term immunosuppression. Mesenchymal stem cells (MSCs) have attracted considerable attention as therapeutic tools as they can be obtained with relative ease and expanded in culture, along with features of self‐renewal and multidirectional differentiation. Many scientific groups have sought to use MSCs differentiating into functional hepatocytes to be used in cell transplantation with liver tissue engineering to repair diseased organs. In most of the literature, hepatocyte differentiation refers to use of various additional growth factors and cytokines, such as hepatocyte growth factor (HGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), oncostatin M (OSM) and more, and most are involved in signalling pathway regulation and cell–cell/cell–matrix interactions. Signalling pathways have been shown to play critical roles in embryonic development, tumourigenesis, tumour progression, apoptosis and cell‐fate determination. However, mechanisms of MSCs differentiating into hepatocytes, particularly signalling pathways involved, have not as yet been completely illustrated. In this review, we have focused on progress of signalling pathways associated with mesenchymal stem cells differentiating into hepatocytes along with the stepwise differentiation procedure.  相似文献   

4.
5.
The transplantation of cultured stem and progenitor cells is a key element in the rapidly growing field of regenerative medicine. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have already entered into clinical trials. However, despite several decades of intense research, the goal to apply culture-expanded stem/progenitor cells in a manner that can effectively replace cells after injury has yet to be realized. Many sources of potentially useful cells are available, but something is clearly missing. In addition, recent studies suggest that paracrine effects of secreted or released factors are responsible for most of the benefits observed after cell transplantation, rather than direct cell replacement. These data call into question the need for cell transplantation for many types of therapy, in particular for acute injuries such as myocardial infarction and stroke. In this review, we examine current progress in the area of cell transplantation and minor issues and major hurdles regarding the clinical application of different cell types. We discuss the "paracrine hypothesis" for the action of transplanted stem/progenitor cells as an opportunity to identify defined combinations of biomolecules to rescue and/or repair tissues after injury. Although many of the concepts in this review will apply to multiple injury/repair systems, we will focus primarily on stem/progenitor cell-based treatments for neurological disorders and stroke.  相似文献   

6.
Stem cells can give rise to more stem cells or differentiate into more specialized cells. In the last 5 years not only have researchers succeeded in isolating human embryonic stem (hES) cell lines but also in identifying adult stem cells with possible pluripotent differentiation capacity. The shortage of donor organs or tissues for regenerative medicine has further stimulated research into the capacity of stem cells to differentiate into different cells and their use in replacement therapy in diseases such as Parkinson's, diabetes, rheumatoid arthritis and myocardial infarction. Current problems and recent progress with respect to hES cells and their potential use for clinical applications will be discussed. The potential of adult stem cells for differentiation and tissue repair is reviewed elsewhere.  相似文献   

7.
Stem-cell-based approaches for regenerative medicine   总被引:2,自引:0,他引:2  
Recent success in transplantation of islets raises the hopes of diabetic patients that replacement therapies may be a feasible treatment of their disease. Although several lines of evidence suggest that stem cells exist in the pancreas, it is still technically hard for us to isolate or maintain the stem cells in vitro. The establishment of human embryonic stem (ES) cells has excited scientists regarding their potential medical use in tissue replacement therapy. When applied with appropriate signals, ES cells can be directed to differentiate into a specific cell lineage. Therefore, ES cells are no doubt an excellent source not only for regenerative medicine but also for studies of early events of pancreatic development, and to portray the pancreatic progenitor cells. Despite many attempts that have been tried, the efficiency of differentiation of ES cells into islets is still very low. This low efficiency reflects our lack of understanding of the intrinsic and extrinsic signals which regulate the developmental processes of the pancreas. In this review, I present a summary of recent works on ES cells, the identification of pancreatic progenitor cells from the adult pancreas, and refer to the possibilities of transdifferentiation from adult stem cells derived from other tissues.  相似文献   

8.
Stemness,fusion and renewal of hematopoietic and embryonic stem cells   总被引:7,自引:0,他引:7  
Development of replacement cell therapies awaits the identification of factors that regulate nuclear reprogramming and the mechanisms that control stem cell renewal and differentiation. Once such factors and signals will begin to be elucidated, new technologies will have to be envisaged where uniform differentiation of adult or embryonic stem cells along one differentiation pathway can be induced. Controlled differentiation of stem cells will require the engineering of niches and extracellular signal combinations that would amplify a particular signaling network and allow uniform and selective differentiation. Three recent advances in stem cell research open the possibility to approach engineering studies for cell replacement therapies. Fusion events between stem cells and adult cells or between adult and embryonic stem cells have been shown to result in altered fates and nuclear reprogramming of cell hybrids. Hematopoietic stem cells were shown to require Wnt signaling in order to renew. The purification of Wnt proteins would allow their use as exogenous purified cytokines in attempts to amplify stem cells before bone marrow transplantation. The homeodomain protein Nanog has been shown to be crucial for the embryonic stem cell renewal and pluripotency. However, the cardinal question of how stemness is preserved in the early embryo and adult stem cells remains opened.  相似文献   

9.
10.
The planarian, a freshwater flatworm, has proven to be a powerful system for dissecting metazoan regeneration and stem cell biology1,2. Planarian regeneration of any missing or damaged tissues is made possible by adult stem cells termed neoblasts3. Although these stem cells have been definitively shown to be pluripotent and singularly capable of reconstituting an entire animal4, the heterogeneity within the stem cell population and the dynamics of their cellular behaviors remain largely unresolved. Due to the large number and wide distribution of stem cells throughout the planarian body plan, advanced methods for manipulating subpopulations of stem cells for molecular and functional study in vivo are needed.Tissue transplantation and partial irradiation are two methods by which a subpopulation of planarian stem cells can be isolated for further study. Each technique has distinct advantages. Tissue transplantation allows for the introduction of stem cells, into a naïve host, that are either inherently genetically distinct or have been previously treated pharmacologically. Alternatively, partial irradiation allows for the isolation of stem cells within a host, juxtaposed to tissue devoid of stem cells, without the introduction of a wound or any breech in tissue integrity. Using these two methods, one can investigate the cell autonomous and non-autonomous factors that control stem cell functions, such as proliferation, differentiation, and migration.Both tissue transplantation5,6 and partial irradiation7 have been used historically in defining many of the questions about planarian regeneration that remain under study today. However, these techniques have remained underused due to the laborious and inconsistent nature of previous methods. The protocols presented here represent a large step forward in decreasing the time and effort necessary to reproducibly generate large numbers of grafted or partially irradiated animals with efficacies approaching 100 percent. We cover the culture of large animals, immobilization, preparation for partial irradiation, tissue transplantation, and the optimization of animal recovery. Furthermore, the work described here demonstrates the first application of the partial irradiation method for use with the most widely studied planarian, Schmidtea mediterranea. Additionally, efficient tissue grafting in planaria opens the door for the functional testing of subpopulations of naïve or treated stem cells in repopulation assays, which has long been the gold-standard method of assaying adult stem cell potential in mammals8. Broad adoption of these techniques will no doubt lead to a better understanding of the cellular behaviors of adult stem cells during tissue homeostasis and regeneration.  相似文献   

11.
Multiple tissue niches in the human body are now recognised to harbour stem cells. Here, we have asked how different adult stem cell populations, isolated from two ontogenetically distinct human organs (skin, pancreas), actually are with respect to a panel of standard markers/characteristics. Here we show that an easily accessible adult human tissue such as skin may serve as a convenient source of adult stem cell-like populations that share markers with stem cells derived from an internal, exocrine organ. Surprisingly, both, human pancreas- and skin-derived stem/progenitor cells demonstrate differentiation patterns across lineage boundaries into cell types of ectoderm (e.g. PGP 9.5+ and GFAP+), mesoderm (e.g. alpha-SMA+) and entoderm (e.g. amylase+ and albumin+). This intriguing differentiation capability warrants systemic follow-up, since it raises the theoretical possibility that an adult human skin-derived progenitor cell population could be envisioned for possible application in cell replacement therapies.  相似文献   

12.
Neural stem cells for spinal cord repair   总被引:1,自引:0,他引:1  
Spinal cord injury (SCI) causes the irreversible loss of spinal cord parenchyma including astroglia, oligodendroglia and neurons. In particular, severe injuries can lead to an almost complete neural cell loss at the lesion site and structural and functional recovery might only be accomplished by appropriate cell and tissue replacement. Stem cells have the capacity to differentiate into all relevant neural cell types necessary to replace degenerated spinal cord tissue and can now be obtained from virtually any stage of development. Within the last two decades, many in vivo studies in small animal models of SCI have demonstrated that stem cell transplantation can promote morphological and, in some cases, functional recovery via various mechanisms including remyelination, axon growth and regeneration, or neuronal replacement. However, only two well-documented neural-stem-cell-based transplantation strategies have moved to phase I clinical trials to date. This review aims to provide an overview about the current status of preclinical and clinical neural stem cell transplantation and discusses future perspectives in the field.  相似文献   

13.
Nakahara T  Ide Y 《Human cell》2007,20(3):63-70
Experiments with animal models have shown that the tooth crown structure can be regenerated using tissue engineering techniques that combine tooth bud cells and biodegradable materials, or by using embryonic tissue and adult stem cells. Moreover, tooth roots and periodontal tissues have been reconstructed by grafting dental stem cells, which leads to the recovery of tooth function, suggesting that tooth regeneration will become possible in humans in the near future. The present article reviews current research on tooth regeneration, discusses a model of tooth replacement that could be used clinically, and proposes a new tooth regeneration approach that overcomes the difficulties associated with the tooth replacement model. Tooth regeneration is an important stepping stone in the establishment of engineered organ transplantation, which is one of the ultimate goals of regenerative therapies.  相似文献   

14.
The adult central nervous system (CNS) contains a population of neural stem cells, yet unlike many other tissues, has a very limited capacity for self-repair. Promoting tissue repair and functional recovery following CNS injury or disease is a high priority as there are currently no effective treatments towards this end for the treatment of disorders such as stroke, traumatic brain injury and spinal cord injury. Recent advances in stem cell biology have offered a number of enticing potential avenues and we will discuss these possibilities along with the associated challenges as they pertain to stroke. We will consider exogenous therapies involving the transplantation of adult stem cells, and the mobilization of endogenous stem cells, as well as drug delivery and tissue engineering strategies that enhance and complement the cell based strategies.  相似文献   

15.
Since the replacement of the hematopoietic system became feasible through bone marrow (BM) transplantation, the idea of how to replace other organs of the body has been in the forefront of medical research. Scientists have been searching for the ideal stem cell that could be manipulated to differentiate into any tissue. Although the embryonal stem cells seemed to have the ability to do this, the difficulties surrounding their use prevented them from becoming therapeutically useful. Thus, the field turned to adult stem cells, particularly stem cells of BM origin. We have learnt a lot during the last decade about the potential of the BM-derived stromal (also called mesenchymal stem) cells (BMSCs). The first studies suggested them as cell replacement tools, but later it turned out that their usefulness is more likely due to paracrine effects due to a large variety of secreted factors that induce growth and differentiation of the tissue-specific stem cells as well as prevent injured cells from apoptotic death. Finally, a whole new field emerged when many groups confirmed that these cells are also capable of regulating immune function in a so far unknown, dynamic manner. When BMSCs are injected they seem to be able to sense the environment and respond according to the actual need of the organism in order to survive. This plasticity can never be done by the use of any drugs and such a "live" cell therapy could open a whole new chapter in clinical care in the future.  相似文献   

16.
糖尿病的细胞治疗   总被引:3,自引:0,他引:3  
胰岛素产生细胞的缺陷或缺乏导致的Ⅰ型糖尿病是影响人类健康的重大疾病之一。最近细胞移植和组织工程的研究进展,使得糖尿病的细胞替代治疗成为可能,即通过胰岛素产生细胞的移植治疗Ⅰ型糖尿病和某些Ⅱ型糖尿病。但是由于供体细胞缺乏的限制,使得糖尿病的细胞治疗难以广泛开展。胰腺干细胞将成为胰岛素产生细胞的潜在来源。就Ⅰ型糖尿病的发病机制和治疗中存在的问题、胰腺干细胞的分离和分化、胰岛移植治疗糖尿病的局限性和干细胞治疗的必要性、糖尿病细胞治疗的探讨作如下介绍。  相似文献   

17.
Potential of embryonic and adult stem cells in vitro   总被引:3,自引:0,他引:3  
Recent developments in the field of stem cell research indicate their enormous potential as a source of tissue for regenerative therapies. The success of such applications will depend on the precise properties and potentials of stem cells isolated either from embryonic, fetal or adult tissues. Embryonic stem cells established from the inner cell mass of early mouse embryos are characterized by nearly unlimited proliferation, and the capacity to differentiate into derivatives of essentially all lineages. The recent isolation and culture of human embryonic stem cell lines presents new opportunities for reconstructive medicine. However, important problems remain; first, the derivation of human embryonic stem cells from in vitro fertilized blastocysts creates ethical problems, and second, the current techniques for the directed differentiation into somatic cell populations yield impure products with tumorigenic potential. Recent studies have also suggested an unexpectedly wide developmental potential of adult tissue-specific stem cells. Here too, many questions remain concerning the nature and status of adult stem cells both in vivo and in vitro and their proliferation and differentiation/transdifferentiation capacity. This review focuses on those issues of embryonic and adult stem cell biology most relevant to their in vitro propagation and differentiation. Questions and problems related to the use of human embryonic and adult stem cells in tissue regeneration and transplantation are discussed.  相似文献   

18.
Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by promoting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal bioengineering recently resulted in successful transplantation of the world's first bioengineered trachea. Current trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspective of using human native sites as micro-niche for potentiation of the human body's site-specific response by sequential adding, boosting, permissive, and recruitment impulses.  相似文献   

19.
Stem cells represent a promising step for the future of regenerative medicine. As they are able to differentiate into any cell type, tissue or organ, these cells are great candidates for treatments against the worst diseasesthat defy doctors and researchers around the world. Stem cells can be divided into three main groups:(1) embryonic stem cells;(2) fetal stem cells; and(3) adult stem cells. In terms of their capacity for proliferation, stem cells are also classified as totipotent, pluripotent or multipotent. Adult stem cells, also known as somatic cells, are found in various regions of the adult organism, such as bone marrow, skin, eyes, viscera and brain. They can differentiate into unipotent cells of the residing tissue, generally for the purpose of repair. These cells represent an excellent choice in regenerative medicine, every patient can be a donor of adult stem cells to provide a more customized and efficient therapy against various diseases, in other words, they allow the opportunity of autologous transplantation. But in order to start clinical trials and achieve great results, we need to understand how these cells interact with the host tissue, how they can manipulate or be manipulated by the microenvironment where they will be transplanted and for how long they can maintain their multipotent state to provide a full regeneration.  相似文献   

20.
BM stem cells and cardiac repair: where do we stand in 2004?   总被引:1,自引:0,他引:1  
Orlic D 《Cytotherapy》2005,7(1):3-15
Adult BM stem cells are being investigated for their potential to regenerate injured tissues by a process referred to as plasticity or transdifferentiation. Although data supporting stem cell plasticity is extensive, a controversy has emerged based on findings that propose cell-cell fusion as a more appropriate interpretation for this phenomenon. A major focus of this controversy is the claim that acutely infarcted myocardium in adult hearts can be regenerated by BM stem cells. Many researchers consider the adult heart to be a post-mitotic organ, whereas others believe that a low level of cardiomyocyte renewal occurs throughout life. If renewal occurs, it may be in response to cardiac stem cell activity or to stem cells that migrate from distant tissues. Post-mortem microscopic analysis of experimentally induced myocardial infarctions in several rodent models suggests that cardiomyocyte renewal is achieved by stem cells that infiltrate the damaged tissue. For a better understanding of the possible involvement of stem cells in myocardial regeneration, it is important to develop appropriate technologies to monitor myocardial repair over time with an emphasis on large animal models. Studies on non-human primate, swine and canine models of acute myocardial infarctions would enable investigators to utilize clinical quality cell-delivery devices, track labeled donor cells after precision transplantation and utilize non-invasive imaging for functional assays over time with clinical accuracy. In addition, if stem cell plasticity is to reach the next level of acceptance, it is important to identify the environmental cues needed for stem cell trafficking and to define the genetic and cellular mechanisms that initiate transdifferentiation. Only then will it be possible to determine if, and to what extent, BM stem cells are involved in myocardial regeneration and to begin to regulate precisely tissue repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号