首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dependence of photosynthetic capacity on imported and locally-assimilatedsupplies of carbon during leaf development under different irradianceswas investigated in Glycine max. The potential export of carbonto the developing, mainstem trifoliate leaf (source-potential)was restricted non-destructively by shading all lower, sourceleaves (source-shading), while local photosynthesis was modifiedconcurrently by exposing the young leaf to different light levelsduring development. When source-shading was applied below the2nd mainstem trifoliate leaf at the bud stage of development,photosynthetic capacity was unaffected in leaves which had developedunder moderate and low irradiances (500 and 250 µmol PARm –2 s–1 respectively), but was reduced significantlyin leaves developed under a high irradiance (900 µmolPAR m –2 s–1). If source-shading was applied beneaththe 2nd leaf at unfolding, the reduction of photosynthetic capacityunder the high irradiance was relatively minor. The photosyntheticcapacity attained by the 2nd leaf during development under differentirradiances was influenced by the previous light environmentof the whole plant. In contrast to the 2nd leaf, the photosyntheticcapacities of the 1st and 4th mainstem leaves were relativelyunaffected by source-shading, even under the highest light regime.While photosynthetic capacity showed a widespread insensitivityto the light level of the lower region of the canopy, source-shadingreduced final leaf size irrespective of node position or localirradiance during leaf development. These effects were not relatedto differences in daily photosynthesis by the expanding leaf,and are discussed in terms of the source/sink balance of thedeveloping leaf. Key words: Glycine max, source-shading, photosynthetic capacity  相似文献   

2.
Patterns of distribution of 14C were determined in 47-day-oldtomato plants (Lycopersicon esculentum Mill.) 24 h after theapplication of [14C]sucrose to individual source leaves fromleaves 1–10 (leaf 1 being the first leaf produced abovethe cotyledons). The first inflorescence of these plants wasbetween the ‘buds visible’ and the ‘firstanthesis’ stages of development. The predominant sink organs in these plants were the root system,the stem, the developing first inflorescence and the shoot ‘apex’(all tissues above node 10). The contribution made by individualsource leaves to the assimilate reaching these organs dependedupon the vertical position of the leaf on the main-stem axisand upon its position with respect to the phyllotactic arrangementof the leaves about this axis. The root system received assimilateprincipally from leaf 5 and higher leaves, and the stem apexfrom the four lowest leaves. The developing first inflorescencereceived assimilates mainly from leaves in the two orthostichiesadjacent to the radial position of the inflorescence on thevertical axis of the plant; these included leaves which weremajor contributors of 14C to the root system (leaves 6 and 8)and to the shoot apex (leaves 1 and 3). This pattern of distributionof assimilate may explain why root-restriction treatments andremoval of young leaves at the shoot apex can reduce the extentof flower bud abortion in the first inflorescence under conditionsof reduced photoassimilate availability. Lycopersicon esculentum Mill, tomato, assimilate distribution, source-sink relationships  相似文献   

3.
Post-Anthesis Economy of Carbon in a Cultivar of Cowpea   总被引:1,自引:0,他引:1  
Budgets for transfer of carbon from individual leaves and othersource organs to fruits and nodulated roots were constructedfor stages of the post-flowering development of symbiotically-dependentcowpea (Vigna unguiculata L. Walp. cv. Vita 3-Rhizobium strainCB756). Exportable surpluses of carbon from sources, assessedfrom net exchanges of CO2 and changes in carbon content, wereallocated to sink organs in proportion to carbon consumption(growth and respiration) and the ability of each sink organto attract assimilates from the sources, as demonstrated by14C-feeding. The first 10 d after flowering showed high sinkactivity by roots, stem and petioles, low consumption by fruits,with the upper three trifoliate blossom leaves providing thebulk of the required assimilates. The next 10 d showed a sharpdecline in photosynthesis of the leaf subtending the oldestfruit followed by similar declines in leaves at the other fruitingnodes. All leaflets at fruiting nodes abscised during the final10 d period, while the two lower leaves, not subtending fruits,remained green and supplied most of the carbon required by developingfruits and roots. Throughout fruiting all currently-active sourcessupplied all sinks, with only slight evidence of blossom leavesspecializing in nourishing their subtended fruits. Of the carbontranslocated from leaves during fruiting 32% came from the topmostleaf, 28% from the leaf below this, 16% from the next leaf,and the remaining 24% from the lowest three leaves. Some 80%of the fruit's total intake of carbon came from leaves, therest from mobilization of stored carbon (partly sugars and starch)fromother vegetative parts. Key words: Carbon, Translocation, Cowpea  相似文献   

4.
The distribution of radioactivity from applied sucrose.14C and32P to various plant parts were studied in relation to the retardationof leaf senescence by applied benzyladenine (BA) in intact beanplants. In short-time experiments sucrose-14C was fed to theplants for 48 h through the second trifoliate leaf at weeklyintervals from the third to the eighth week after planting.In long-term experiments sucrose-14C was fed to all plants for48 h at the third week and changes in distribution examinedat weekly intervals up till the eight week. In both cases, BAapplied to the primary leaves of intact bean plants did notcause a directed mobilization of sucrose-14C. When the plantswere stripped, leaving the primary leaves and the terminal pod,and fed sucrose-14C or 32P through the terminal leaflet of thesecond trifoliate leaf, the BA-treated leaf accumulated relativelymore radioactivity than the opposite water-treated leaf. Itwas concluded that the retardation of senescence by BA in theprimary leaves of intact bean plants does not result directlyfrom the mobilization of metabolites and nutrients from otherplant parts. It is therefore suggested that BA-induced longevityin the primary leaves of the intact plant is accomplished bymetabolic self-sustenance.  相似文献   

5.
The distribution of 14C-labelled assimilate after infectionof the dwarf bean plant with Pseudomonas phaseolicola was followed.Infection of a single unifoliate leaf did not affect the totalfixation of 14CO2 by unifoliates during the assimilation period.Fixation was maximal in unifoliates in the early stages of growthbut declined as trifoliates expanded. Unifoliates on infectedplants retained a greater proportion of assimilated 14carbonthan leaves on healthy plants.The pattern of distribution ofexported assimilate was not altered in the early stages of infection,the root and apex acting as the major sinks. As the diseasedeveloped, the first trifoliate leaf, unlike similar leaveson healthy plants, continued to import assimilate apparentlyat the expense of the root. Fixation by the first trifoliateand the distribution of assimilate from this leaf were not alteredby infection of a single unifoliate leaf. At no stage duringdevelopment of the disease was there any evidence of translocationof assimilate to either inoculated or non-inoculated unifoliates.  相似文献   

6.
We report measurements of evaporation rate, leaf resistanceto evaporation and water conduction in the stems of young olivetrees (Olea europea L.) growing in Messina, Italy, during thewinter and early spring. We have measured what Zimmermann calls‘leaf specific conductivity’ (LSC) of stem segmentsexcised from olive trees. The LSC is a measure of the specifichydraulic conductivity of stem segments normalized per unitarea of leaves supplied by the stem segment rather than perunit area of sapwood cross-sectional area. We find that theLSC's of primary stems were the largest followed in magnitudeby the LSC's of secondary stems and tertiary stems. Under winterand early spring conditions the maximum evaporative flux fromCoratina and Nocellara varieties of olive trees is about 2.6x 10–5 kg 8–1 m–2. From this and the LSC measurementswe calculate that the pressure gradients needed to maintainthis rate of evaporation in the steady state is 65 kPa m–1in primary stems, 170 kPa m–1 in secondary stems and 560kPa m–1 in tertiary stems. Olive, Olea europea L, evaporation, leaf specific conductivity, hydraulic conductivity, leaf resistance  相似文献   

7.
Soybean plants [Glycine max (L.) Merr. cv. AGS129], two andthree weeks after depodding and defoliation, respectively, wereused to examine the possibility of end-product regulation onthe carbon exchange rate and activities of enzymes involvedin sucrose metabolism in leaves. Removal of one and two lateralleaflets per trifoliate leaf reduced the total leaf area by20% and 47%, respectively. Removal of one pod per node reducedthe total pod number by 23% per plant. Dry weights of roots,stems and petioles decreased with reductions in leaf area. Bycontrast, removal of pods resulted in an increase in these parameters.The carbon exchange rate and transpiration rate of leaves increasedwith defoliation and decreased with depodding. The intercellularconcentration of CO2 in leaves was reduced by defoliation andincreased by depodding. Furthermore, defoliation increased thelevel of leaf chlorophyll in leaves while depodding decreasedit. Removal of pods decreased the activities of sucrose-phosphatesynthase and -amylase but increased that of sucrose synthase.A significant positive correlation was found between the activityof leaf sucrose-phosphate synthase and both the carbon exchangerate and the sucrose content of leaves. Thus, manipulation ofthe sink and source in soybean plants influenced the relationshipbetween sucrose metabolism and the carbon exchange rate in intactleaves. 3Faculty of Agriculture, Okayama University, Tsusimanaka Okayama,700 Japan 4Faculty of Agriculture, Saga University, Honjo-machi, Saga,840 Japan 1Present address: Faculty of Agriculture, Sriwijaya University,J1 Raya Indralaya, OK1 30662, Indonesia 2Present address: Faculty of Agriculture, Saga University, Honjo-machi,Saga, 840 Japan  相似文献   

8.
The comparative patterns of penetration of 2,4-dichlorophenoxyaceticacid (2,4-D) into the leaves of Phaseolus vulgaris, Zea mays,Pisum sativum, Beta wlgaris, Helianthus annuus and Gossypiumhirsuium have been examined. Save for Zea and Gossypium where there is little change withthe stage of leaf development the rates of penetration intoboth surfaces decrease as the leaf matures. The relative ratesare dependent on the species and the age of the leaf but thereare differences between the surfaces. In Phaseolus the characteristicsof primary leaves differ from those of trifoliate leaves sinceonly in immature trifoliate leaves is penetration into the adaxialsurface greater. In darkness the rates of penetration over 24 h remain constantor fall but slightly for all species. Light consistently promotespenetration but with Beta there is a lag before entry is acceleratedinto the abaxial surface as has previously been reported foryoung primary leaves of Phaseolus. For the remaining speciesthe courses of penetration in both light and darkness into bothsurfaces follow similar patterns. As the light intensity isincreased entry is enhanced but the limit of response variesbetween species, between surfaces within species, and in trifoliateleaves of Phaseolus with age. For the six species the order of the relative rates of entryis closely similar whether comparisons are made in light ordarkness or between abaxial and adaxial surfaces: viz. Zea >Helianthus > Phaseolus (primary) > Phaseolus (trifoliate)> Pisum = Beta = Gossypium. The observed specific differencesare discussed in relation to variations in leaf structure, theproperties and thickness of the cuticle and the physiologicaland metabolic processes which influence transport within theepidermal tissues after it has passed through the cuticle bydiffusion.  相似文献   

9.
The contribution of individual vascular bundles of the stemto the flow of assimilates from a selected source leaf to thesink regions was investigated inUrtica dioica L., a plant witha decussate leaf arrangement. Two homologous sets of eight vascularstrands were recognized, arranged in mirror symmetry in thestem internodes. In each set, three of the bundles were identifiedas traces of one leaf merging into the vascular system of thestem one node below the origin of the leaf. The main bundleof a stem-half bifurcates at each end of the internode intotwo subdominant bundles, which combine in the next but one nodeto form the dominant bundle again. Each set of vascular strandsalso contains two minor bundles which pass more or less withoutinterruption through the whole stem. The uppermost mature source leaf (leaf number 5 as counted fromthe tip) was exposed to14CO2in a closed gas circuit. The concentrationof the carbon-labelled CO2was maintained at the ambient CO2levelto maintain the natural source strength of the leaf. By theend of the usual nocturnal dark phase, carbon from the sourceleaf had been imported predominantly by sink leaves of the sameorthostichy. Lesser, but significant amounts of radiocarbonwere also incorporated into the sink leaves of the adjacenttwo orthostichies via the marginal leaf traces. In spite ofthe junction of the vascular strands in the nodes and an interfascicularconnection of the stem bundles, randomization of the photosynthatesfrom individual leaves was minimal in the vascular system ofthe stem in the upward direction, and also low in the flux tothe roots. Substantial amounts of radioactivity were also foundin the lately-formed xylem elements of the vascular strandsand their interfascicular connections, indicating active secondarygrowth. Assimilate distribution; source–sink connections; Urtica dioica ; vascular architecture  相似文献   

10.
The three-dimensional quantitative leaf anatomy in developingyoung (9–22 d) first leaves of wild type Arabidopsis thalianacv. Landsberg erecta from mitosis through cell and leaf expansionto the cessation of lamina growth has been studied. The domainsof cell division, the relative proportion of the cell typespresent during development and the production of intercellularspace in the developing leaf have been determined by image analysisof entire leaves sectioned in three planes. Mitotic activityoccurs throughout the youngest leaves prior to unfolding andcell expansion is initiated firstly at the leaf tip with a persistentzone of mitotic cells at the leaf base resulting in a gradientof development along the leaf axis, which persists in the olderleaves. Major anatomical changes which occur during the developmentare, a rapid increase in mesophyll volume, an increase in thevein network, and expansion of the intercellular spaces. Thepattern of cell expansion results in a 10-fold variation inmesophyll cell size in mature leaves. In the youngest leavesthe plan area of mesophyll cells varies between 100 µm2and 400 µm2 whereas in mature leaves mesophyll cells rangein plan area from 800 µm2 to 9500 µm2. The volumesof mesophyll tissue and airspace under unit leaf area increase3-fold and 35-fold, respectively, during leaf expansion. Thevolume proportions of tissue types mesophyll:airspace:epiderrnal:vascularin the mature leaf are 61:26:12:1, respectively. This studyprovides comparative information for future identification andanalysis of leaf development mutants of Arabidopsis thaliana. Key words: Arabidopsis, quantitative leaf anatomy, leaf expansion, image analysis  相似文献   

11.
Much of the work on the distribution of 14C-labelled assimilatesin tomato has been done in winter under low light intensities,and consequently the reported distribution patterns of 14C maynot be representative of plants growing in high light. Further,there are several somewhat conflicting reports on patterns ofdistribution of 14C-assimilates in young tomato plants. We soughtto clarify the situation by studying the distribution of 14C-assimilatesin tomato plants of various ages grown in summer when the lightintensity was high. In addition, the role of the stem as a storageorgan for carbon was assessed by (a) identifying the chemicalfractions in the stem internode below a fed leaf and monitoring14 C activity in these fractions over a period of 49 d, and(b) measuring concentrations of unlabelled carbohydrates inthe stem over the life of the plant. The patterns of distribution of 14C-assimilates we found fortomato grown under high light intensity confirmed some of thosedescribed for plants grown under low light, but export of 14Cby fed leaves was generally higher than reported for much ofthe earlier work. Lower leaves of young plants exported over50% of the 14C they fixed, although export fell sharply as theplants aged. Initially, the roots and apical tuft were strongsinks for assimilates, but they had declined in importance bythe time plants reached the nine-leaf stage. On the other hand,the stem became progressively more important as a sink for 14C-assimilates.Older, lower leaves exported more of their 14C-assimilates tothe upper part of the plant than to the roots, whereas youngleaves near the top of the plant exported more of their assimilatesto the roots. The stem internode immediately below a fed leafhad about twice the 14C activity of the internode above theleaf. Mature leaves above and below a fed leaf rarely importedmuch 14C, even when in the correct phyllotactic relationshipto the fed leaf. In the first 3 d after feeding leaf 5 of nine-leaf plants, theorganic and amino acid pools and the neutral fraction of theinternode below the fed leaf had most of the 14C activity, butby 49 d after feeding, the ethanolic-insoluble, starch and lipidfractions had most of the 14C activity. Glucose, fructose andsucrose were the main sugars in the stem. Although concentrationsof these sugars and starch declined in the stem as the plantsmatured, there was little evidence to indicate their use infruit production. Stems of plants defoliated at the 44-leafstage had lower concentrations of sugars and starch at maturity,and produced less fruit than the controls. It was concludedthat tomato is sink rather than source limited with respectto carbon assimilates, and that the storage of carbon in thestem for a long period is possibly a residual perennial traitin tomato.Copyright 1994, 1999 Academic Press Lycopersicon esculentum, tomato, assimilate distribution, 14C, internode storage, sink-source relationships, starch, stem reserves, sugars  相似文献   

12.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

13.
This paper reports the changes which occurred in the concentrationof ions, organic acids, sugars and polyhydric alcohols whenplants of Phaseolus vulgaris were grown in culture solutioncontaining 48 m mol l–1 sodium chloride. Attention wasfocused particularly on the changes in the primary and firsttrifoliate leaves. In the latter leaves of salt-treated plantsthere were initially very high concentrations of sodium andmuch higher concentrations of glucose and inositol than in controlleaves. Subsequently concentrations of these solutes declined,the decline of sodium being due to retranslocation out of theleaf. There were no striking differences between the concentrationof organic solutes of the primary leaves of salt-treated plantsand those of control plants. There were greater concentrationsof ions in the salt-treated primary leaves, particularly a greaterconcentration of potassium (though that in the medium was thesame in both treatments). While the calcium concentrations inboth sets of primary leaves were very similar, it appeared thatin the leaves of salt-treated plants much of the ion is solublewithin the cells while in the leaves of the control plants,most of the ion is thought to be associated with the cell wall.There was a greater concentration of organic acids in the leavesof the control plants but in both treatments, primary and trifoliateleaves each had a similar composition of acids. Sodium ionswere restrained from entering the leaves by selection againstthe ion in favour of potassium in the root and possibly by retentionof sodium in the stem. The data on solute concentrations togetherwith calculated values of cellular osmotic potentials are discussedin relation to the development of the first trifoliate leaves.  相似文献   

14.
The Role of Roots in Control of Bean Shoot Growth   总被引:10,自引:0,他引:10  
CARMI  A.; HEUER  B. 《Annals of botany》1981,48(4):519-528
Restriction of root growth by growing bean plants (Phaseolusvulgaris L.) in very small pots led to the development of dwarfplants. The leaves of those plants were smaller and their internodesshorter than those of control plants which were grown in largerpots and had developed a more extensive root system. A largequantity of starch—much more than in control plants —accumulated in the leaves and shoots of the dwarf plants. Increasingthe amount of minerals which was supplied to the roots, enhancedleaf growth of the control plants but failed to affect the dwarfones, in spite of the fact that in both cases the treatmentincreased the content of N, P and K in all the plant organs.The leaf water content was similar in both treatments, but theleaf water potential was higher in the dwarf plants. Exogenousapplication of gibberellic acid (GA3) to the dwarf plants overcamethe reduction of stem growth completely, and that of the leavespartially. Application of the cytokinin, benzyladenine (BA)did not affect stem growth, but increased that of the primaryleaves. A combined supply of GA2 + BA restored completely thegrowth of the stem and the primary leaves, and partially thatof the trifoliate leaves. It is concluded that a limited rootsystem restricts shoot growth through an hormonal system inwhich at least gibberellins and cytokinins are involved, andthat the dwarfing is not a consequence of mineral or assimilatedeficiency, or due to water stress. Phaseolus vulgaris L., leaf growth, stem growth, root restriction, gibberellic acid, benzyladenine, cytokinin  相似文献   

15.
WOLEDGE  J. 《Annals of botany》1979,44(2):197-207
The photosynthetic capacity of newly expanded leaves of vernalizedor non-vernalized plants of S24 perennial ryegrass (Lolium perenneL.), grown in long or short photoperiods, was measured in twoexperiments. In the first, leaves were protected from shadingduring development, while in the second, the natural shade ofneighbouring tillers in a sward was allowed. In the first experiment there was little effect of vernalization,day length or flowering, and leaves in all treatments had photosyntheticrates at 250 W m–2 of between 28 and 32 mg CO2 dm–2h–1.In the second experiment the photosynthetic rate of successiveleaves fell as sward leaf area increased. This downward trendwas reversed, however, in flowering tillers in the vernalizedlong-day treatment, while in the other treatments, which didnot flower, photosynthetic capacity continued to fall. It isconcluded that the leaves of reproductive tillers have highphotosynthetic capacities because stem extension carries themto the top of the canopy where they are well illuminated duringexpansion. Lolium perenneL, ryegrass, photosynthetic capacity, flowering, shading, vernalization  相似文献   

16.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

17.
The assimilation of carbon (C) by, and distribution of 14C from,leaves at each end of an unbroken sequence of ten mature leaveson the main stolon of clonal plants of white clover (Trifoliumrepens L.) were measured to identify intra-plant factors determiningthe direction of C movement from leaves. Leaves at two intermediatepositions were also measured. Localized movement of 14C to sinks at the same node as, or atthe one to two nodes immediately behind, the fed leaf accountedfor 40–50% of the total 14C exported by all measured leaves.A further 50–60% of exported 14C was therefore availablefor more-distant sinks, and the direction of translocation ofthis C was determined by the relative total strength or demand(number x size x rate of activity or growth) of sinks forwardof, or behind, the leaf in question. Thus 85% of the 14C exportedfrom the youngest measured leaf moved toward the base of thestolon, while about 60% of the 14C exported from the oldestleaf moved acropetally. Defoliating plants to leave just one mature leaf on the mainstolon (at any one of the same four positions studied in undefoliatedplants), and no leaves on branches, resulted in: (1) increasednet photosynthetic rate in all residual leaves: (2) increased%export of fixed C from one of the four leaves; (3) increasedexport to the main stolon apex from all except the eldest leaf;(4) increased export to branches from three of the four leaves;and (5) decreased export to stolon tissue and roots from allleaves, within 3 d of defoliation. These responses would seemto ensure the fastest possible replacement of lost leaf areaand, thus, restoration of homeostatic growth. The observed patternsof C assimilation and distribution in both undefoliated anddefoliated white clover plants are consistent with the generalrules of source-sink theory; the distance between sources andcompeting sinks, and relative sink strength, emerge as the mostimportant intra-plant factors governing C movement. These resultsemphasize the need to consider plant morphology, and the modularnature of plant growth, when interpreting patterns of resourceallocation in clonal plants, or plant responses to stressessuch as partial defoliation. Trifolium repens L, white clover, photosynthesis, assimilate translocation, defoliation  相似文献   

18.
Hordeum vulgare cv. California Mariout was grown for 50 d insand culture at 100 mol m–3 NaCl. Xylem sap was collectedthrough incisions at the base of individual leaves along thestem axis by applying pressure to the root system. K+ concentrationsin the xylem sap reaching individual leaves increased towardsthe apex, while concentrations of Na+, NO3, and Cldeclined. Phloem exudate was obtained by collecting into Li2EDTAfrom the base of excised leaves. K/Na ratios of phloem exudatesincreased from older to younger leaves. K/Na ratios in xylem sap and phloem exudate were combined withchanges in ion content between two harvests (38 and 45 d aftergermination) and the direction of phloem export from individualleaves, to construct an empirical model of K+ and Na+ net flowswithin the xylem and phloem of the whole plant. This model indicatesthat in old leaves, phloem export of K+ greatly exceeded xylemimport. In contrast, Na+ export was small compared to importand Na+ once imported was retained within the leaf. The direction of export strongly depended on leaf age. Old,basal leaves preferentially supplied the root, and most of theK+ retranslocated to the roots was transferred to the xylemand subsequently became available to the shoot. Upper leavesexported to the apex. Young organs were supplied by xylem andphloem, with the xylem preferentially delivering Na+ , and thephloem most of the K+ . For the young ear, which was still coveredby the sheath of the flag leaf, our calculation predicts phloemimport of ions to such an extent that the surplus must havebeen removed by an outward flow in the xylem. Within the culm,indications for specific transfers of K+ and Na+ between xylemand phloem and release or absorption of these ions by the tissuewere obtained. The sum of these processes in stem internodes and leaves ledto a non-uniform distribution of Na+ and K+ within the shoot,Na+ being retained in old leaves and basal stem internodes,and K+ being available for growth and expansion of young tissues. Key words: Hordeum vulgare L., K+, Na+, stem, salt stress  相似文献   

19.
This research examined the hypothesis that as cacti evolve tothe leafless condition, the stem epidermis and cortex becomemore leaflike and more compatible with a photosynthetic role.All cacti in the relict genus Pereskia have non-succulent stemsand broad, thin leaves. All members of the derived subfamilyCactoideae are ‘leafless’, having an expanded cortexthat is the plant's only photosynthetic tissue. In Pereskia,leaves have a high stomatal density (mean: 50.7 stomata mm–2in the lower epidermis, 38.1 mm–2 in the upper epidermis),but stems have low stomatal densities (mean: 11.3 mm 2, threeof the species have none). Stems of Cactoideae have a high stomataldensity (mean: 31.1 mm–2, all species have stomata). Theouter cortex cells of stems of Cactoideae occur in columns,forming a palisade cortex similar to a leaf palisade parenchyma.In this palisade cortex, the fraction of tissue volume availablefor gas diffusion has a mean volume of 12.9%, which is identicalto that of Pereskia leaf palisade parenchyma. Pereskia stemcortex is much less aerenchymatous (mean: 5.3% of cortex volume).Cactoideae palisade cortex has a high internal surface density(0.0207 cm2 cm–2 which is higher than in Pereskia stemcortex (0.0150 cm2 cm–3) but not as high as Pereskia leafpalisade parenchyma (0.0396 cm2 cm–3). Pereskia stem cortexhas no cortical bundles, but Cactoideae cortexes have extensivenetworks of collateral vascular bundles that resemble leaf veins. Cactaceae, cactus, intercellular space, stomatal density, internal surface/volume, evolution  相似文献   

20.
BARLOW  H. W. B. 《Annals of botany》1979,43(5):593-602
In vigorously growing shoots of apple and plum 14C-assimilateswere translocated from a ‘fed’ leaf to particularsectors of other leaves in a distribution pattern associatedwith the phyllotaxis; the same sectorial and distribution patternswere produced by 32P phosphate solution taken into the shootthrough a cut petiole. The frequency with which a given sectorialpattern occurred at a particular position on the phyllotacticspiral was ascertained. Such patterns were not observed abovethe third rolled leaf in the apple shoot apex. Killing the phloem in the petiole prevented egress of labelledassimilate but not of 32P solution. Barkringing above the sourceleaf reduced, but did not completely prevent, assimilate movementup the stem, suggesting some translocation in the xylem. Distribution of label from 45CaCl2, 86RbCl and [3H]asparagine,incorporated through cut petioles, did not follow the same patternas label from 32P solutions. Malus pumila Mill., apple, Prunus domestica L., Prunus insititia. L., leaf plum, patterns, transport of radioisotopes, vascular phyllotaxis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号