首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three main saponins were isolated from the seeds of Albizzia lucida. Their structures were established by spectral analyses and chemical and enzymatic transformations as 3-O-[β- -xylopyranosyl(1→2)-- -arabinopyranosyl (1→6)] [β- -glucopyranosyl (1→2)] β- -glucopyranosyl echinocystic acid; 3-O-[- -arabinopyranosyl (1→6)][β- -glucopyranosyl (1→2)]-β- -glucopyranosyl echinocystic acid and 3-O-[β- -xylopyranosyl (1→2)-β- -fucopyranosyl (1→6)-2-acetamido-2-deoxy-β- -glucopyranosyl echinocystic acid, characterized as its methyl ester.  相似文献   

2.
Morquio syndrome type B is an inherited, lysosomal storage disease characterised by a marked deficiency in acid β-d-galactosidase, while the 2-acetamido-2-deoxy-β-d-galactose 6-sulphate sulphatase activity is normal. Urinary oligosaccharides were studied in order to evaluate the effect of the diminished β-d-galactosidase activity on the catabolism of glycoconjugates and to compare their structures with those excreted by patients with GM1-gangliosidosis. The following oligosaccharides were isolated: β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)-β-d-Manp-(1→4)- d-GlcpNAc (1), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)-[α-d-Manp- (1→3)]-β-d-Manp-(1→4)-d-GlcpNAc (2a), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)- α-d-Manp-(1→3)-[α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-GlcpNAc (2b), β-d-Galp- (1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→3)-[β-d-Galp-(1→4)-β-d-GlcpNAc-(1→ 2)-α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-GlcpNAc (3), β-d-Galp-(1→4)-β-d-Glcp- NAc-(1→2)-α-d-Manp-(1→3)-{β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-[β-d-Galp- (1→4)-β-d-GlcpNAc-(1→6)]-α-d-Manp-(1→6)}-β-d-Manp-(1→4)-d-GlcpNAc (4), β-d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→3)-[β-d-GlcpNAc-(1→4)]-[β- d-Galp-(1→4)-β-d-GlcpNAc-(1→2)-α-d-Manp-(1→6)]-β-d-Manp-(1→4)-d-Glcp- NAc (5). Significant differences between Morquio syndrome type B and GM1-gangliosidosis have been observed, with regard to the excretion rate and the specific structures of urinary oligosaccharides. Compounds 2a, 2b, and 5 are novel members of the series of oligosaccharides isolated from the urine of patients with inherited, lysosomal storage diseases.  相似文献   

3.
Li JZ  Liu HY  Lin YJ  Hao XJ  Ni W  Chen CX 《Steroids》2008,73(6):594-600
Six new C21 steroidal glycosides, named curassavosides A–F (3–8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (4), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (5), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (8), respectively. All compounds (1–8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.  相似文献   

4.
A (1 → 3)-β-glucan 3-glucanohydrolase (EC 3.2.1.39) has been purified approx. 190-fold from extracts of germinating barley. The enzyme has an apparent Mr 32 000, a pI of 8.6, and a pH optimum of 5.6. Analysis of hydrolysis products released from the (1 → 3)-β-glucan, laminarin, shows that the enzyme is an endohydrolase. Sequence analysis of the 46 NH2-terminal amino acids of the (1 → 3)-β-glucanase reveals 54% positional identity with barley (1 → 3,1 → 4)-β-glucanases (EC 3.2.1.73) and suggests a common evolutionary origin for these two classes of β-glucan endohydrolases. The barley (1 → 3)-β-glucanase also exhibits significant similarity with a (1 → 3)-β-glucanase from tobacco.  相似文献   

5.
A new steroidal glycoside, agaveside D, isolated from the fruits of Agave cantata was characterized as 3β-{- -rhamnopyranosyl-(1→2), β- -glycopyranosyl-(1→3)-β- -glucopyranosyl[β- -xylopyransoyl-(1→4)-- -rhamnopyranosyl-(1→2)]-β- -glucopyranosyl}-25R-5- spirostane on the basis of chemical degradation and spectrometry.  相似文献   

6.
Kim YW  Chen H  Withers SG 《Carbohydrate research》2005,340(18):2735-2741
The application of the hyperactive glycosynthase derived from Agrobacterium sp. β-glucosidase (AbgE358G-2F6) to the synthesis of xylo-oligosaccharides by using -d-xylopyranosyl fluoride as donor represents the first successful use of glycosynthase technology for xylosyl transfer. Transfer to p-nitrophenyl β-d-glucopyranoside yields di- and trisaccharide products with β-(1→4) linkages in 63% and 35% yields, respectively. By contrast, transfer to p-nitrophenyl β-d-xylopyranoside yielded the β-(1→3) linked disaccharide and β-d-Xyl-(1→4)-β-d-Xyl-(1→3)-β-d-Xyl-pNP as major products in 42% and 30% yields, respectively. Transfer of xylose to β-d-Xyl-(1→4)-β-d-Xyl-pNP yielded the β-(1→4) linked trisaccharide in 98% yield, thereby indicating that transfers to xylo-disaccharides occur with formation of β-(1→4) bonds. Xylosylation of carbamate-protected deoxyxylonojirimycin produced a mixture of di- and tri-‘saccharide’ products in modest yields.  相似文献   

7.
Extraction of the aerial parts of Dumasia truncata Sieb et Zucc. afforded two new triterpenoidal saponins, together with four known ones. The structures of the new compounds were elucidated by spectral analysis as 3-O--l-rhamnopyranosyl-(1 → 3)-β-d-glucuronopyranosy-28-O-β-d-glucopyransoyl hederagenin and 3-O-β-d-xylopyranosyl-(1 → 2)-[-l-rhamnopyranosyl(1 → 3)]-β-d-glucuronopyranosyl oleanic acid.  相似文献   

8.
The capsular polysaccharide produced by a Rhizobium isolated from a root nodule of Acacia decurrens is composed of 3-O-methyl- -rhamnose: -rhamnose: - mannose: -glucose: -galacturonic acid in the molar ratios of 1:2:2:4:1. The extracellular polysaccharide is similarly constituted. Structural analyses indicate a decasaccharide repeating-unit in which the -rhamnosyl groups occur as single-unit side-chains. The 3-O-methyl- -rhamnosyl and one of the α- -rhamnosyl groups are (1→6)-linked to two of the -glucosyl residues. The other α- -rhamnosyl group is (1→4)-linked to the -galacturonic acid residue. The main-chain residues are all (1→3)-linked, and are partially identified as -(1→3)-α- -GalpA-(1→3)-α- -Manp- (1→3)-α- -Glcp-(1→3)-.  相似文献   

9.
Investigation of the acetolysis products of the sulphated polysaccharide of the seaweed Aeodes ulvoidea led to the isolation and characterization of the following oligosaccharides: 3-O-α- -galactopyranosyl- -galactose (1), 3-O-(2-O-methyl-α- -galactopyranosyl)- -galactose (2), 4-O-β- -galactopyranosyl-2-O-methyl- -galactose (3), 4-O-β- -galactopyranosyl-2-O-methyl- -galactose (4), O-β- -galactopyranosyl-(1→4)-O-α- -galactopyranosyl-(1→3)- -galactose (5), O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)- -galactose (6), O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)-2-O-methyl- -galactose (7), O-(2-O-methyl-α- -galactopyranosyl)-(1→3)-O-β- -galactopyranosyl-(1→4)-2-O-methyl- -galactose (10), and O-α- -galactopyranosyl-(1→3)-O-β- -galactopyranosyl-(1→4)-O-α- -galactopyranosyl-(1→3)- -galactose. In addition, the isolation of a tetrasaccharide possessing alternating - and -galactose residues demonstrates the hitherto unexpected presence of -galactose in the polysaccharide. The structure of the polysaccharide is discussed.  相似文献   

10.
Ganglioside GM3 analogs containing 4-, 7-, 8-, and 9-deoxy-N-acetylneuraminic acids in the place of N-acetylneuraminic acid (Neu5Ac) have been synthesized. Glycosylation of 2-(trimethylsilyl)ethyl O-(6-O-benzoyl-β- - galactopyranosyl)-(1 → 4)-2,6-di-O-benzoyl-β- -glucopyranoside with the methyl 2-thioglycoside derivatives of the respective deoxy-N-acetylneuraminic acids, using dimethyl(methylthio)sulfonium triflate as a promoter, gave the four required 2-(trimethylsilyl)ethyl -sialosyl-(2 → 3b)-β-lactosides. These were converted via O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, and subsequent imidate formation, into the corresponding -sialosyl-(2 → 3b)--lactose trichloroacetimidates 15, 17, 19, and 21. Glycosylation of (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol with 15, 17, 19, and 21 in the presence of boron trifluoride etherate afforded the expected β glycosides, which were transformed in good yields, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and de-esterification, into the target compounds.  相似文献   

11.
Condensation of methyl 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranoside with 2,3,4,6-tetra-O-benzyl-α- -glucopyranosyl chloride gave a mixture of methyl O-[2,3,4,6-tetra-O-benzyl-α- (4) and -β- -glucopyranosyl]-(1→2)-O-[(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-(1→3)]-4-O-acetyl-α- -rhamnopyranoside (9) in 43:7 proportion in 63% yield. After chromatographic separation, removal of the benzyl and acetyl groups gave methyl O-α- -glucopyranosyl-(1→2)-[O-α- -rhamnopyranosyl-(1→3)]-α- -rhamnopyranoside and the β anomer. Removal of benzyl groups of 4 was followed by tritylation, acetylation, and detritylation of the α- -glucopyranosyl group, and finally condensation with benzyl (2,3,4-tri-O-benzyl- -glucopyranosyl chloride)uronate gave a mixture of two tetrasaccharides (15 and 16), containing the α- and β- -glucopyranosyluronic acid groups in the ratio 81:19, and an overall yield of 71%. After chromatographic separation, alkaline hydrolysis and hydrogenation of 15 gave methyl O-α- -glucopyranosyluronic acid-(1→6)-O-α- -glucopyranosyl-(1→2)-[O-α- -rhamnopyranosyl-(1→3)]-α- -rhamnopyranoside. The β- anomer was obtained by similar treatment of 16. 6-O-α- -glucopyranosyluronic acid-α,β- -glucopyranose was synthesized as a model compound.  相似文献   

12.
Stereoselective syntheses of 3-O-SO3Na-β-Gal-(1 → 4)-β-GlcNAc-(1 → 3)-β-Gal-(1 → 4)-GlcNAc-β-OBn (15) and 3-O-SO3Na-β-Gal-(1 → 3)-β-GlcNAc-(1 → 3)-β-Gal-(1 → 3)-β-GlcNAc-(1 → 3)-β-Gal-(1 → 4)-Glc-β-OBn (25) were accomplished through the use of two novel glycosyl donors, namely, ethyl (8) and ethyl (18).  相似文献   

13.
Three new cycloartane glycosides, trigonoside I, II and III, and the known astragalosides I and II were isolated from the roots of Astragalus trigonus. The structures of the new glycosides were totally elucidated by high field (600 MHz) NMR analyses as cycloastragenol-6-O-β-xylopyranoside, cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-xylopyranosyl]-6-O-β- d-xylopyranoside and cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-(3-O-acetyl)-xylopyranosyl]-6-O-β-d-xylopyranoside.  相似文献   

14.
Microencapsulations of cumin oleoresin by spray drying using gum arabic, maltodextrin, and modified starch (HiCap® 100) and their ternary blends as wall materials were studied for its encapsulation efficiency and stability under storage. The microcapsules were evaluated for the content and stability of volatiles, and total cuminaldehyde, γ-terpinene and p-cymene content for six weeks. Gum arabic offered greater protection than maltodextrin and modified starch, in general, although the order of protection offered was volatiles > cuminaldehyde > p-cymene > γ-terpinene. A 4/6:1/6:1/6 blend of gum arabic/maltodextrin/modified starch offered a protection, better than gum arabic as seen from the t1/2, i.e. time required for a constituent to reduce to 50% of its initial value. However protective effect of ternary blend was not similar for the all the constituents, and followed an order of volatiles > p-cymene > cuminaldehyde > γ-terpinene.  相似文献   

15.
Oat β-glucan, present in oat bran in greater concentrations than in the whole oat groat, is mainly composed of β-(1 → 3)-linked cellotriosyl and cellotetraosyl units, present at 52 and 34% by weight of the molecule, respectively. The remaining structure consits of β-(1 → 3)-linked blocks composed of four or more consecutive β-(1 → 4)-linked -glucopyranosyl units. Size-exclusion chromatography indicated a molecular weight for oat β-glucan of 2–3 × 106. This was significantly reduced during digestion in the small intestine of rats and chicks. In healthy human volunteers, oat β-glucan reduced the postprandial glucose response to an oral glucose load similarly to guar gum. The effectiveness of oat β-glucan was proportional to the logarithm of the viscosity of the solution fed.  相似文献   

16.
Panax ginseng root and cell cultures were shown to biotransform paeonol (1) into its 2-O-β-d-glucopyranoside (2). P. ginseng root cultures were also able to biotransform paeonol (1) into its 2-O-β-d-xylopyranoside (3), 2-O-β-d-glucopyranosyl(1 → 6)-β-d-glucopyranoside (4) and 2-O-β-d-xylopyranosyl(1 → 6)-β-d-glucopyranoside (5), and its demethylated derivate, 2′,4′-dihydroxyacetophenone (6). Compounds 3 and 4 are new glycosides. It is the first example that the administrated compound was converted into its xylopyranoside by plant biotransformation.  相似文献   

17.
Structural data are presented on six oligosaccharide-fractions (hexa- to octa-saccharides) released from sheep -gastric-glycoproteins having blood-group I and i activity by degradation with alkaline borohydride. Previous data on two of the oligosaccharides are included for comparison. The fractions were analysed, before and after treatment with exo-β- -glycosidases and an endo-β- -galactosidase, on Bio-Gel P4 and by p.c., by direct-insertion m.s. (after methylation), and by g.l.c.—m.s. of the derived, partially O-methylated alditol acetates. Each fraction contained 1–3 oligosaccharides, each of which had 2-acetamido-2-deoxy- -galactitol (GalNAc-ol) at the reduced end and involved one of the structures
The majority of the oligosaccharides contained the unsubstituted “type 2” blood group precuisor-chain sequences, β- -Gal-(1→4)-β- -GlcNAc-(1→6) and single or repeating β- -Gal-(1→4)-β- -GlcNAc-(1→3), which are recognised by various anti-blood-group I and i cold agglutinins. The “type 1” sequence, β- -Gal-(1→3)-β-blood-group Ii activities, the following structural model can be proposed, which consists of (a) a core region; (b) a backbone region having (1→3)- and (1→6)-linked N-acetyl-lactosamine [β-Gal-(1→4)-GlcNAc] branches with I activities, and linear, repeating, (1→3)-linked N-acetyl-lactosamine units with i activities; and (c) a peripheral region with blood-group isotype activities.
  相似文献   

18.
Yi Yang-Hua 《Phytochemistry》1991,30(12):4179-4181
A new triterpenoid, esculentagenin, and its glycoside, esculentoside M, were isolated from the roots of Phytolacca esculenta and characterized as 11-oxo-3-O-methyloleanata-12-en-2β,3β,23-trihydroxy-28-oic acid and 3-O-[β - -glucopyranosyl (1→4)-β- -Xylopyranosyl]-28-O-β- -glucopyranosyl-11-oxo-30-methyloleanate-12-en-2β,3β,23-trihydroxy-28-oic acid by spectral and chemical evidence.  相似文献   

19.
The polysaccharide fraction from Ceratozamia spinosa appears to be made up mainly by a chemically homogeneous polysaccharide but with a wide range of molecular weight. By NMR and chemical degradative methods, it is shown to consist essentially of a backbone of alternate → 4)-β- -GlcpA-(1 → and → 2)-- -Manp-(1 → units. On the 4 position of the latter, β- -GlcpA residues are linked. End units of - -Ara f, β- -Xylp, - -Rhap, and - -3-OMe-Rhap are linked to C-3 and/or C-4 positions of β- -Glc pA residues.  相似文献   

20.
The pentasaccharide chain of the Forssman antigen, O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→3)-O-(2-acetamido-2-deoxy-β-d-galactopyranosyl)-(1→3)-O-α-d- galactopyranosyl-(1→4)-O-β-d-galactopyranosyl-(1→4)-d-glucopyranose (46) was synthesized by a block synthesis in which an α-d-glycoside linkage between two d-galactose residues was formed. The trisaccharide O-(6-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-α-d-galactopyranosyl)- (1→3)-O-(6-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-(1→3)-6-O-acetyl-2,4-di-O-benzyl- α-d-galactopyranosyl bromide (40) (this was obtained through acetolysis of O-(6-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-α-d-galactopyranosyl)- (1→3)-O-(6-O-acetyl-4-O-benzyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-(1→3)-1,6-anhydro-2,4-di-O-benzyl-β-d- galactopyranose to the acetyl derivative, followed by reaction with titanium tetrabromide under anhydrous conditions) was condensed with benzyl-4-O-(6-O-benzoyl-2,3-di-O-benzyl-β-d-galactopyranosyl)-2,3,6- tri-O-benzyl-β-d-glucopyranoside were in the presence of silver carbonate and perchlorate. The resulting pentasaccharide was deprotected to give 46.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号