首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We report on unrestrained molecular dynamics simulations of an RNA tetramer binding to a tetra-nucleotide overhang at the 5′-end of an RNA hairpin (nicked structure) and of the corresponding continuous hairpin with Na+ as counterions. The simulations lead to stable structures and in this way a structural model for the coaxially stacked RNA hairpin is generated. The stacking interface in the coaxially stacked nicked hairpin structure is characterized by a reduced twist and shift and a slightly increased propeller twist as compared to the continuous system. This leads to an increased overlap between C22 and G23 in the stacking interface of the nicked structure. In the simulations the continuous RNA hairpin has an almost straight helical axis. On the other hand, the corresponding axis for the nicked structure exhibits a marked kink of 39°. The stacking interface exhibits no increased flexibility as compared to the corresponding base pair step in the continuous structure.  相似文献   

2.
RNA junctions are common secondary structural elements present in a wide range of RNA species. They play crucial roles in directing the overall folding of RNA molecules as well as in a variety of biological functions. In particular, there has been great interest in the dynamics of RNA junctions, including conformational pathways of fully base-paired 4-way (4H) RNA junctions. In such constructs, all nucleotides participate in one of the four double-stranded stem regions, with no connecting loops. Dynamical aspects of these 4H RNAs are interesting because frequent interchanges between parallel and antiparallel conformations are thought to occur without binding of other factors. Gel electrophoresis and single-molecule fluorescence resonance energy transfer experiments have suggested two possible pathways: one involves a helical rearrangement via disruption of coaxial stacking, and the other occurs by a rotation between the helical axes of coaxially stacked conformers. Employing molecular dynamics simulations, we explore this conformational variability in a 4H junction derived from domain 3 of the foot-and-mouth disease virus internal ribosome entry site (IRES); this junction contains highly conserved motifs for RNA-RNA and RNA-protein interactions, important for IRES activity. Our simulations capture transitions of the 4H junction between parallel and antiparallel conformations. The interconversion is virtually barrier-free and occurs via a rotation between the axes of coaxially stacked helices with a transient perpendicular intermediate. We characterize this transition, with various interhelical orientations, by pseudodihedral angle and interhelical distance measures. The high flexibility of the junction, as also demonstrated experimentally, is suitable for IRES activity. Because foot-and-mouth disease virus IRES structure depends on long-range interactions involving domain 3, the perpendicular intermediate, which maintains coaxial stacking of helices and thereby consensus primary and secondary structure information, may be beneficial for guiding the overall organization of the RNA system in domain 3.  相似文献   

3.
A new principle of RNA folding based on pseudoknotting.   总被引:66,自引:32,他引:34       下载免费PDF全文
Tertiary interactions involving hairpin or interior loops of RNA can lead to extended quasi-continuous double helical stem regions, consisting of coaxially stacked segments of duplex RNA, bridged by single-stranded connections. This type of compact folding plays a role in various strategic regions of RNA molecules. Their role in ribosome functioning, RNA splicing and recognition of tRNA-like structures is discussed.  相似文献   

4.
5.
The RNA pseudoknot located at the 5' end of the gene 32 messenger RNA of bacteriophage T2 contains two A-form helical stems connected by two loops, in an H-type pseudoknot topology. A combination of multidimensional NMR methods and isotope labeling were used to investigate the pseudoknot structure, resulting in a more detailed structural model than provided by earlier homonuclear NMR studies. Of particular significance, the interface between the stacked helical stems within the pseudoknot motif is described in detail. The two stems are stacked in a coaxial manner, with an approximately 18 degrees rotation of stem1 relative to stem2 about an axis that is parallel to the helical axis. This rotation serves to relieve what would otherwise be a relatively close phosphate-phosphate contact at the junction of the two stems, while preserving the stabilizing effects of base stacking. The ability of the NMR data to determine pseudoknot bending was critically assessed. The data were found to be a modestly precise indicator of pseudoknot bending, with the angle between the helical axes of stem1 and stem2 being in the range of 15+/-15 degrees. Pseudoknot models with bend angles within this range are equally consistent with the data, since they differ by only small amounts in the relatively short-range interproton distances from which the structure was derived. The gene 32 messenger RNA pseudoknot was compared with other RNA structures with coaxial or near-coaxial stacked helical stems.  相似文献   

6.
In this paper, we present the results from a comprehensive study of nanosecond-scale implicit and explicit solvent molecular dynamics simulations of the wild-type telomerase RNA hairpin. The effects of various mutations on telomerase RNA dynamics are also investigated. Overall, we found that the human telomerase hairpin is a very flexible molecule. In particular, periodically the molecule exhibits dramatic structural fluctuations represented by the opening and closing of a non-canonical base-pair region. These structural deviations correspond to significant disruptions of the direct hydrogen bonding network in the helix, widening of the major groove of the hairpin structure, and causing several U and C nucleotides to protrude into the major groove from the helix permitting them to hydrogen bond with, for example, the P3 domain of the telomerase RNA. We suggest that these structural fluctuations expose a nucleation point for pseudoknot formation. We also found that mutations in the pentaloop and non-canonical region stabilize the hairpin. Moreover, our results show that the hairpin with dyskeratosis congenita mutations is more stable and less flexible than the wild-type hairpin due to base stacking in the pentaloop. The results from our molecular dynamics simulations are in agreement with experimental observations. In addition, they suggest a possible mechanism for pseudoknot formation based on the dynamics of the hairpin structure and also may explain the mutational aspects of dyskeratosis congenita.  相似文献   

7.
8.
Stabilization of RNA stacking by pseudouridine.   总被引:6,自引:4,他引:6       下载免费PDF全文
The effect of the modified nucleoside pseudouridine (psi) on RNA structure was compared with uridine. The extent of base stacking in model RNA oligonucleotides was measured by 1H NMR, UV, and CD spectroscopy. The UV and CD results indicate that the model single-stranded oligoribonucleotides AAUA and AA psi A form stacked structures in solution and the CD results for AA psi A are consistent with a general A-form helical conformation. The AA psi A oligomer exhibits a greater degree of UV hypochromicity over the temperature range 5-55 degrees C, consistent with a better stacked, more A-form structure compared with AAUA. The extent of stacking for each nucleotide residue was inferred from the percent 3'-endo sugar conformation as indicated by the H1'-H2' NMR scalar coupling. This indirect indication of stacking was confirmed by sequential NOE experiments. NMR measurements as a function of temperature indicate that pseudouridine forms a more stable base stacking arrangement than uridine, an effect that is propagated throughout the helix to stabilize stacking of neighboring purine nucleosides. The N1-H imino proton in AA psi A exchanges slowly with solvent, suggesting a role for the extra imino proton in stabilizing the conformation of pseudouridine. These results show that the conformational stabilization is an intrinsic property of pseudouridine occurring at the nucleotide level. The characteristics of pseudouridine in these models are consistent with earlier studies on intact rRNA, indicating that pseudouridine probably performs the same stabilizing function in most structural contexts.  相似文献   

9.
Abstract

We have designed a new type of antisense oligonucleotide, containing two hairpin loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA)) in the double helical stem (nicked and circular dumbbell DNA/RNA chimeric oligonucleotides). The reaction of the nicked and circular dumbbell DNA/RNA chimeric oligonucleotides with RNase H gave the corresponding anti-DNA together with the sense RNA cleavage products. These oligonucleotides were more resistant to exonuclease attack. We also describe the anti-Fluv activities of nicked and circular dumbbell DNMA chimeric oligonucleotides.  相似文献   

10.
Abstract

We have designed a new type of oligodeoxyribonucleotide. These oligodeoxyribonucleotides form two hairpin loop structures with base pairs (sense and antisense) in the double helical stem at the 3′ and 5′-ends (nicked dumbbell oligonucleotides). The nicked dumbbell oligonucleotides are molecules with free ends that are more resistant to exonuclease attack. Furthermore, the nicked dumbbell oligonucleotide containing phosphorothioate (P=S) bonds in the hairpin loops has increased nuclease resistance, as compared to the unmodified nicked oligonucleotide. The binding of the nicked dumbbell oligonucleotide to RNA is lower than that of a single-stranded DNA. We also describe the anti-HIV activity of nicked dumbbell oligonucleotides.

  相似文献   

11.
Molecular dynamics simulations of the RNA-binding domain of the U1A spliceosomal protein in complex with its cognate RNA hairpin, performed at low and high ionic strength in aqueous solution, suggest a pathway for complex dissociation. First, cations condense around the RNA and compete with the protein for binding sites. Then solvated ions specifically destabilize residues at the RNA-protein interface. For a discrete cluster of residues at the complex interface, the simulations reveal an increased deviation from the crystal structure at high salt concentrations while the remaining protein scaffold is stabilized under these conditions. The microscopic picture of salt influence on the complex suggests guidelines for rational design of interface inhibitors targeted at RNA-protein complexes.  相似文献   

12.
In the second step of the two consecutive transesterifications of the self-splicing reaction of the group I intron, the conserved guanosine at the 3' terminus of the intron (omegaG) binds to the guanosine-binding site (GBS) in the intron. In the present study, we designed a 22-nt model RNA (GBS/omegaG) including the GBS and omegaG from the Tetrahymena group I intron, and determined the solution structure by NMR methods. In this structure, omegaG is recognized by the formation of a base triple with the G264 x C311 base pair, and this recognition is stabilized by the stacking interaction between omegaG and C262. The bulged structure at A263 causes a large helical twist angle (40 +/- 80) between the G264 x C311 and C262 x G312 base pairs. We named this type of binding pocket with a bulge and a large twist, formed on the major groove, a "Bulge-and-Twist" (BT) pocket. With another twist angle between the C262 x G312 and G413 x C313 base pairs (45 +/- 100), the axis of GBS/omegaG is kinked at the GBS region. This kinked axis superimposes well on that of the corresponding region in the structure model built on a 5.0 A resolution electron density map (Golden et al., Science, 1998, 282:345-358). This compact structure of the GBS is also consistent with previous biochemical studies on group I introns. The BT pockets are also found in the arginine-binding site of the HIV-TAR RNA, and within the 16S rRNA and the 23S rRNA.  相似文献   

13.
Various mutants of the protein fragment, barnase module-1 (1-24) were investigated in order to reveal the structural principle of amyloid-like fibrils. By means of circular dichroism spectroscopy, X-ray diffraction, electron microscopy, and thioflavin T binding assay, we found that the molecules containing two beta-strands and an intervening turn structure are assembled to form a cross-beta structure. Stabilization by both the hydrophobic interactions and hydrogen bonding between the respective paired side-chains on the coupled beta-strands was essential for fibril formation. These two types of interaction can also arrange the corresponding residues in lines on both sheet surfaces of protofilaments with a cross-beta structure. This leads to the most probable fibril structure constructed with the line-matching interactions between protofilaments. Consideration of the geometrical symmetry resulted in our finding that a limited number of essential models for molecular packing in fibril structure are stable, which would rationally explain the occurrence of two or three morphologies from an identical molecular species. The ribbon-like fibrils exhibited striped texture along the axis, which was assigned to a stacked two-sheet repeat as a structural unit. The comprehensively proposed structural model, that is, the sheet-sheet interaction between left-handed cross-beta structures, results in a slightly right-handed twist of beta-sheet stacking, which reasonably elucidates the intrinsic sizes of the fibril width and its helical period along the fibril axis, as the bias in the orientation of the hydrogen-bonded beta-strand pair at the lateral edge is larger than that at the central protofilament.  相似文献   

14.
Three-way DNA junctions can adopt several different conformers, which differ in the coaxial stacking of the arms. These structural variants are often dominated by one conformer, which is determined by the DNA sequence. In this study we have compared several three-way DNA junctions in order to assess how the arrangement of bases around the branch point affects the conformer distribution. The results show that rearranging the different arms, while retaining their base sequences, can affect the conformer distribution. In some instances this generates a structure that appears to contain parallel coaxially stacked helices rather than the usual anti-parallel arrangement. Although the conformer equilibrium can be affected by the order of purines and pyrimidines around the branch point, this is not sufficient to predict the conformer distribution. We find that the folding of three-way junctions can be separated into two groups of dinucleotide steps. These two groups show distinctive stacking properties in B-DNA, suggesting there is a correlation between B-DNA stacking and coaxial stacking in DNA junctions.  相似文献   

15.
The crystal structure of the RNA octamer duplex r(CCCIUGGG)2has been elucidated at 2.5 A resolution. The crystals belong to the space group P21and have unit cell constants a = 33.44 A, b = 43.41 A, c = 49.39 A and beta = 104.7 degrees with three independent duplexes (duplexes 1-3) in the asymmetric unit. The structure was solved by the molecular replacement method and refined to an Rwork/Rfree of 0.185/0.243 using 3765 reflections between 8.0 and 2.5 A. This is the first report of an RNA crystal structure incorporating I.U wobbles and three molecules in the asymmetric unit. Duplex 1 displays a kink of 24 degrees between the mismatch sites, while duplexes 2 and 3 have two kinks each of 19 degrees and 27 degrees, and 24 degrees and 29 degrees, respectively, on either side of the tandem mismatches. At the I.U/U.I mismatch steps, duplex 1 has a twist angle of 33.9 degrees, close to the average for all base pair steps, but duplexes 2 and 3 are underwound, with twist angles of 24.4 degrees and 26.5 degrees, respectively. The tandem I.U wobbles show intrastrand purine-pyrimidine stacking but exhibit interstrand purine-purine stacking with the flanking C.G pairs. The three independent duplexes are stacked non-coaxially in a head-to-tail fashion to form infinite pseudo-continuous helical columns which form intercolumn hydrogen bonding interactions through the 2'-hydroxyl groups where the minor grooves come together.  相似文献   

16.
Structure of a small RNA hairpin.   总被引:1,自引:1,他引:0       下载免费PDF全文
The hairpin stem-loop form of the RNA oligonucleotide rCGC(UUU)GCG has been studied by NMR spectroscopy. In 10 mM phosphate buffer this RNA molecule forms a unimolecular hairpin with a stem of three base pairs and a loop of three uridines, as judged by both NMR and UV absorbance melting behavior. Distance and torsion angle restraints were determined using homonuclear proton-proton and heteronuclear proton-phosphorus 2-D NMR. These values were used in restrained molecular dynamics to determine the structure of the hairpin. The stem has characteristics of A-form geometry, although distortion from A-form occurs in the 3'-side of the stem, presumably to aid in accommodating the small loop. The loop nucleotides adopt C2'-endo conformations. NOE's strongly suggest stacking of the uracils with the stem, especially the first uracil on the 5'-side of the loop. The reversal of the chain direction in the loop seems to occur between U5 and U6. Loop structures produced by molecular dynamics simulations had a wide range of conformations and did not show stacking of the uracils. A flexible loop with significant dynamics is consistent with all the data.  相似文献   

17.
Three-way junctions (3H) are the simplest and most commonly occurring branched nucleic acids. They consist of three double helical arms (A to C), connected at the junction point, with or without a number of unpaired bases in one or more of the three different strands. Three-way junctions with two unpaired bases in one strand (3HS2) have a high tendency to adopt either of two alternative stacked conformations in which two of the three arms A, B and C are coaxially stacked, i.e. A/B-stacked or A/C-stacked. Empirical stacking rules, which successfully predict for DNA 3HS2 A/B-stacking preference from sequence, have been extended to A/C-stacked conformations. Three novel DNA 3HS2 sequences were designed to test the validity of these extended stacking rules and their conformational behavior was studied by solution NMR. All three show the predicted A/C-stacking preference even in the absence of multivalent cations. The stacking preference for both classes of DNA 3HS2 can thus be predicted from sequence. The high-resolution NMR solution structure for one of the stacked 3HS2 is also reported. It shows a well-defined local and global structure defined by an extensive set of classical NMR restraints and residual dipolar couplings. Analysis of its global conformation and that of other representatives of the 3H family, shows that the relative orientations of the stacked and non-stacked arms, are restricted to narrow regions of conformational space, which can be understood from geometric considerations. Together, these findings open up the possibility of full prediction of 3HS2 conformation (stacking and global fold) directly from sequence.  相似文献   

18.
The solution structure of a DNA three-way junction (3H) containing two unpaired thymidine bases at the branch site (3HT2), was determined by NMR. Arms A and B of the 3HT2 form a quasi-continuous stacked helix, which is underwound at the junction and has an increased helical rise. The unstacked arm C forms an acute angle of approximately 55 degrees with the unique arm A. The stacking of the unpaired thymidine bases on arm C resembles the folding of hairpin loops. From this data, combined with the reported stacking behavior of 23 other 3HS2 s, two rules are derived that together correctly reproduce their stacking preference. These rules predict, from the sequence of any 3HS2, its stacking preference. The structure also suggests a plausible mechanism for structure-specific recognition of branched nucleic acids by proteins.  相似文献   

19.
We investigate the microsecond-timescale kinetics of the RNA hairpin gacUUCGguc. The fluorescent nucleotide 2-aminopurine (a) reports mainly on base stacking. Ten kinetic traces and the temperature denaturation curve are globally fitted to four-state models of the free-energy surface. In the best-fitting sequential model, the hairpin unfolds over successively larger barriers in at least three stages: stem fraying and increased base-stacking fluctuations; concerted loss of hydrogen bonding and partial unstacking; and additional unstacking of single strands at the highest temperatures. Parallel and trap models also provide adequate fits: such pathways probably also play a role in the complete free-energy surface of the hairpin. To interpret the model states structurally, 200 ns of molecular dynamics, including six temperature-jump simulations, were run. Although the sampling is by no means comprehensive, five different states were identified using hydrogen bonding and base stacking as reaction coordinates. The four to five states required to explain the experiments or simulations set a lower limit on the complexity of this small RNA hairpin's energy landscape.  相似文献   

20.
We describe the packing features of the oligonucleotide duplex d(AAATTT)2, as determined by X-ray diffraction. There is little information on sequences that only contain A and T bases. The present structure confirms that these sequences tend to pack as a helical arrangement of stacked oligonucleotides in a B conformation with Watson-Crick hydrogen bonding. Our results demonstrate that the virtual TA base step between stacked duplexes has a negative twist that improves base stacking. This observation is consistent with the low stability of TA base steps in B-form DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号