首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Intrinsic water use efficiency (WUE(intr)), the ratio of photosynthesis to stomatal conductance to water, is often used as an index for crop water use in breeding projects. However, WUE(intr) conflates variation in these two processes, and thus may be less useful as a selection trait than knowledge of both components. The goal of the present study was to determine whether the contribution of photosynthetic capacity and stomatal conductance to WUE(intr) varied independently between soybean genotypes and whether this pattern was interactive with mild drought. Photosynthetic capacity was defined as the variation in WUE(intr) that would occur if genotypes of interest had the same stomatal conductance as a reference genotype and only differed in photosynthesis; similarly, the contribution of stomatal conductance to WUE(intr) was calculated assuming a constant photosynthetic capacity across genotypes. Genotypic differences in stomatal conductance had the greatest effect on WUE(intr) (26% variation when well watered), and was uncorrelated with the effect of photosynthetic capacity on WUE(intr). Thus, photosynthetic advantages of 8.3% were maintained under drought. The maximal rate of Rubisco carboxylation, generally the limiting photosynthetic process for soybeans, was correlated with photosynthetic capacity. As this trait was not interactive with leaf temperature, and photosynthetic capacity differences were maintained under mild drought, the observed patterns of photosynthetic advantage for particular genotypes are likely to be consistent across a range of environmental conditions. This suggests that it is possible to employ a selection strategy of breeding water-saving soybeans with high photosynthetic capacities to compensate for otherwise reduced photosynthesis in genotypes with lower stomatal conductance.  相似文献   

2.
As the main forestry species in the Canary Islands (Spain), Pinus canariensis is frequently used in afforestation programs. Several nursery techniques are commonly employed to modify its morphology and physiology with the aim of improving post-planting survival and growth. In this work, we studied how fertilization and light regime treatments applied during the nursery period modify biomass allocation patterns and produce effects in gas exchange and root hydraulic conductance. Seedlings were grown for a 6-month period in the nursery under two light regimes (full sunlight and 40% PAR reduction), and three fertilization levels were applied in each light regime. Morphology, biomass allocation patterns, leaf gas exchange and hydraulic conductance of the whole root system were evaluated. Fertilization treatments produced significant changes in biomass allocation, gas exchange and root hydraulic conductance under both light regimes. In contrast, no differences were found between full sunlight and shade, except for a slight variation in the root:shoot ratio. Photosynthesis rate and WUE increased with fertilization in both light regimes, while E and gs maintained the same values. An opposite trend was observed for root hydraulic conductance, which showed lower values with high fertilization regimes. The results obtained indicate that fertilization is more important, determining high photosynthetic capacity than high hydraulic conductance rates before planting in Pinus canariensis containerized seedlings.  相似文献   

3.
The most promising traits identified in wheat to raise yield potential via an increase in biomass accumulation are stomatal conductance and stomatal‐conductance‐related traits, such as carbon isotope discrimination (CID) and photosynthetic rate. The evaluation of the extent of genetic variation and the mapping of chromosomal regions controlling these traits are essential for the development of effective breeding strategies in durum wheat. A population of 161 F2‐derived, F8–F9 recombinant inbred lines obtained from a cross between durum wheat (Triticum turgidum ssp. durum) cultivars Ofanto and Cappelli was phenotyped for heading date, plant height, leaf porosity, CID and chlorophyll concentration (estimated through the SPAD index) for 2007/2008 and 2008/2009 seasons, at Ottava, Sardinia (Italy) under irrigated conditions. The genotype mean heritability for leaf porosity, CID and chlorophyll concentration was moderate in size. Six quantitative trait loci were detected for leaf porosity, four for chlorophyll concentration, but only one for CID, because of the small variation expressed in the population for this trait under these experimental conditions. The quantitative trait loci for leaf porosity located on chromosome 3B appear to be more stable with respect to the others, and different microsatellite markers are positioned within the interval of the quantitative trait loci, or in their vicinity, that represent useful tools in programmes for selection assisted by molecular markers.  相似文献   

4.
刘英  雷少刚  程林森  程伟  卞正富 《生态学报》2018,38(9):3069-3077
采煤塌陷引起的土壤环境因子的变化对矿区植物生长的影响越来越受到人们的关注,气孔导度、蒸腾与光合作用作为环境变化响应的敏感因子,研究植物气孔导度、蒸腾与光合作用的变化是揭示荒漠矿区自然环境变化及其规律的重要手段之一。研究采煤塌陷条件下植物光合生理的变化是探究煤炭开采对植物叶片水分蒸腾散失和CO_2同化速率影响的关键环节,是探讨采煤塌陷影响下植物能量与水分交换动态的基础,而采煤矿区植物叶片气孔导度、蒸腾与光合作用速率对采煤塌陷影响下土壤含水量变化的响应如何尚不清楚。选取神东煤田大柳塔矿区52302工作面为实验场地,以生态修复物种柠条为研究对象,对采煤塌陷区和对照区柠条叶片气孔导度、蒸腾和光合作用速率以及土壤体积含水量进行监测,分析了采煤塌陷条件下土壤含水量的变化以及其对柠条叶片气孔导度、蒸腾与光合作用速率的影响。结果显示:(1)煤炭井工开采在地表形成大量裂缝,破坏了土体结构,潜水位埋深降低,土壤含水量均低于沉陷初期,相对于对照区,硬梁和风沙塌陷区土壤含水量分别降低了18.61%、21.12%;(2)柠条叶片气孔导度、蒸腾和光合作用速率均与土壤含水量呈正相关关系;煤炭开采沉陷增加了地表水分散失,加剧了土壤水分胁迫程度,为了减少蒸腾导致的水分散失,柠条叶片气孔阻力增加,从而气孔导度降低,阻碍了光合作用CO_2的供应,从而导致柠条叶片光合作用速率的降低,蒸腾速率也显著降低。  相似文献   

5.
Circadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.  相似文献   

6.
This study aimed to investigate the effects of waterlogging on the growth and photosynthetic characteristics of paired near-isogenic lines of waterlogging-tolerant (Zz-R) and waterlogging-sensitive (Zz-S) waxy corn inbred line seedlings. All plants were grown until the fifth leaves were fully expanded. Subsequently the plants in the pots were submerged in water for 4 d. During the waterlogging period, morphological and photosynthetic parameters related to waterlogging tolerance were examined. After 4 d, a significant decrease was observed in shoot and root fresh mass, net photosynthetic rate, stomatal conductance, transpiration, water-use efficiency, light-saturation point, maximal photosynthetic rate, apparent quantum yield, maximal quantum yield of PSII, and effective quantum yield of PSII photochemistry in waterlogged plants of both genotypes. The Zz-R genotype showed lesser reduction in all mentioned indices when compared to the Zz-S genotype. The inhibition of photosynthesis under waterlogging occurred due to the reduction in stomatal conductance, fluorescence parameters, and chlorophyll content. Thus, our study revealed that the Zz-R genotype can be a source of genetic diversity for important traits such as morphological and photosynthetic parameters.  相似文献   

7.
羊草叶片气体交换参数对温度和土壤水分的响应   总被引:15,自引:4,他引:15       下载免费PDF全文
 采用生长箱控制的方法研究了羊草(Leymus chinensis)幼苗叶片光合参数对5个温度和5个水分梯度的响应和适应。结果表明:轻度、中度土壤干旱并没有限制羊草叶片的生长,对气体交换参数亦无显著影响,反映了羊草幼苗对土壤水分胁迫的较高耐性。叶片生物量以26 ℃时最大,其它依次为23 ℃、20 ℃、29 ℃和32 ℃。温度升高使气孔导度和蒸腾速率增加, 却使光合速率和水分利用效率降低。水分和温度对叶片生物量、光合速率、气孔导度和蒸腾速率存在显著的交互作用,表明高温加强了干旱对叶片生长和气体交换的影响, 降低了羊草对土壤干旱的适应能力。高温和干旱的交互作用将显著减少我国半干旱地区草原的羊草生产力。  相似文献   

8.
Water stress is one of the main environmental stresses that affect plant growth and development. Salicylic acid (SA) induces water stress tolerance in plants. In this study, the effect of exogenous SA on physiological and biochemical process in Red bayberry (Myric rubra) seedlings, of three different genotypes, that were grown under water stress (soil ranging from 20 to 50 % of field capacity) was evaluated. Results showed that water stress severely affected the relative water content (RWC), photosynthesis, stomatal conductance and enzymes activities. Genotypes differed in RWC, Chlorophyll content, gas exchange parameter, antioxidant enzymes activities and proline, and the genotype Biqi had the RWC, photosynthesis, stomatal conductance and enzymes activities greater than the other two genotypes Wangdao and Shenhong. SA treated plants showed, in general, a higher RWC, chlorophyll content, photosynthetic rate, stomatal conductance, superoxide dismutase activity and proline content, and a lower relative electrolyte conductivity, methane dicarboxylic aldehyde content and catalase activity compared to those of untreated seedlings. These results signified the role of SA in diminishing the negative effects of drought on Red bayberry plants and suggest that SA could be used as a potential growth regulator, for improving plant growth under water stress.  相似文献   

9.
土壤水分变化对长白山主要树种蒙古栎幼树生长的影响   总被引:16,自引:3,他引:13  
选择长白山红松阔叶林主要优势树种蒙古栎为研究对象,人工控制3种施水量研究蒙古栎幼树形态、生物量效应和光合生理特征对土壤含水量变化的响应.结果表明,不同土壤含水量变化显著影响蒙古栎叶片、枝、根的生物量及其分配格局和叶片光合气体交换特征.水分胁迫改变幼树树冠结构,抑制幼树树高、地径、叶片大小、地上和地下生物量;同时,蒙古栎幼树根冠生物量比随着土壤水分含量的减少显著提高;供水量减少对幼树净光合速率、CO2利用率和碳利用率等特征有显著的负向影响;而叶片气孔导度、蒸腾速率和水分利用率对不同土壤含水量反应较复杂,只在土壤含水量较低时,幼树气孔导度、蒸腾速率明显降低,叶片水分利用率升高,表现出蒙古栎树种是干旱可变植物,长期水分胁迫可提高树种的耐旱能力.  相似文献   

10.
Genetic improvement and hybridization in the Populus genus have led to the development of genotypes exhibiting fast growth, high rooting ability and disease resistance. However, while large biomass production is important for bioenergy crops, efficient use of resources including water is also important in sites lacking irrigation and for maintaining ecosystem water availability. In addition, comparison of water use strategies across a range of growth rates and genetic variability can elucidate whether certain strategies are shared among the fastest growing and/or most water use efficient genotypes. We estimated tree water use throughout the second growing season via sapflow sensors of 48 genotypes from five Populus taxa; P. deltoides W. Bartram ex Marshall × P. deltoides (D × D), P. deltoides × P. maximowiczii A. Henry (D × M), P. deltoides × P. nigra L. (D × N), P. deltoides × P. trichocarpa Torr. & Gray (D × T) and P. trichocarpa × P. deltoides (T × D) and calculated average canopy stomatal conductance (GS). We regressed GS and atmospheric vapor pressure deficit (VPD) wherein the slope of the relationship represents stomatal sensitivity to VPD. At the end of the second growing season, trees were harvested, and their dry woody biomass was used to calculate whole tree water use efficiency (WUET). We found that D × D and D × M genotypes exhibited differing water use strategies with D × D genotypes exhibiting high stomatal sensitivity while retaining leaves while D × M genotypes lost leaf area throughout the growing season but exhibited low stomatal sensitivity. Across measured taxa, biomass growth was positively correlated with WUET, and genotypes representing each measured taxa except D × N and T × D had high 2-year dry biomass of above 6 kg/tree. Overall, these data can be used to select Populus genotypes that combine high biomass growth with stomatal sensitivity and WUET to limit the negative impacts of bioenergy plantations on ecosystem water resources.  相似文献   

11.
We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under moderate and high light regimes to short-term water deficit followed by rewatering. Under adequate water supply, morphological and photosynthetic characteristics differed between species. D. antarctica, although putatively the more shade and less drought adapted species, had greater chlorophyll a/b ratio, and greater water use efficiency and less negative δ13C. Both species were susceptible to water deficit regardless of the light regime showing significant decreases in photosynthetic parameters (A max, V cmax, J max) and stomatal conductance (g s ) in conjunction with decreased relative frond water content (RWC) and predawn frond water potential (Ψpredawn). During the water deficit period, decreases in g s in both species started one day later, and were at lower soil water content, under moderate light compared with high light. D. antarctica under moderate light was more vulnerable to drought than all other plants as was indicated by greater decreases in Ψpredawn, lowest stomatal conductance, and photosynthetic rates. Both tree fern species were able to recover after a short but severe water stress.  相似文献   

12.
To test the hypothesis that variation in photosynthesis can cause differences in fitness, we compared wild‐type (WT) Amaranthus hybridus genotypes to those having a single‐gene mutation (R) that affects photosynthetic rate. By using light and water treatments, we generated a range of differences between WT and R genotypes in photosynthetic rate, growth and reproduction at three developmental stages. In two cases photosynthetic differences were in the expected direction (WT > R), they did not differ in others, and in one case the R genotype had a higher rate than the WT. Across light and water treatments, higher rates of photosynthesis were related to increases in specific leaf area, leaf nitrogen content and stomatal conductance relative to the other genotype. Differences between genotypes in growth and allocation paralleled those in photosynthesis; in treatments where photosynthetic rate differed between the genotypes (high light), growth and reproduction did as well. In high light, the effects of genotype on fitness were indirect with high‐water availability, but were direct with low‐water availability. When photosynthetic rate did not differ between genotypes (low light), neither did growth and reproduction. These results demonstrate that variation in photosynthesis can cause differences in growth and reproduction. Furthermore, resource availability can moderate the ways in which selection operates on photosynthetic traits.  相似文献   

13.
Extreme climatic events, such as heat waves, cold snaps and drought spells, related to global climate change, have become more frequent and intense in recent years. Acclimation of plant physiological processes to changes in environmental conditions is a key component of plant adaptation to climate change. We assessed the temperature response of leaf photosynthetic parameters in wheat grown under contrasting water regimes and growth temperatures (Tgrowth). Two independent experiments were conducted under controlled conditions. In Experiment 1, two wheat genotypes were subjected to well-watered or drought-stressed treatments; in Experiment 2, the two water regimes combined with high, medium and low Tgrowth were imposed on one genotype. Parameters of a biochemical C3-photosynthesis model were estimated at six leaf temperatures for each factor combination. Photosynthesis acclimated more to drought than to Tgrowth. Drought affected photosynthesis by lowering its optimum temperature (Topt) and the values at Topt of light-saturated net photosynthesis, stomatal conductance, mesophyll conductance, the maximum rate of electron transport (Jmax) and the maximum rate of carboxylation by Rubisco (Vcmax). Topt for Vcmax was up to 40°C under well-watered conditions but 24–34°C under drought. The decrease in photosynthesis under drought varied among Tgrowth but was similar between genotypes. The temperature response of photosynthetic quantum yield under drought was partly attributed to photorespiration but more to alternative electron transport. All these changes in biochemical parameters could not be fully explained by the changed leaf nitrogen content. Further model analysis showed that both diffusional and biochemical parameters of photosynthesis and their thermal sensitivity acclimate little to Tgrowth, but acclimate considerably to drought and the combination of drought and Tgrowth. The commonly used modelling approaches, which typically consider the response of diffusional parameters, but ignore acclimation responses of biochemical parameters to drought and Tgrowth, strongly overestimate leaf photosynthesis under variable temperature and drought.  相似文献   

14.
Effects of zinc [0 and 5.0 mg Zn kg−1 (soil)] on photosynthetic rate (PN), and chlorophyll fluorescence in leaves of maize (Zea mays L.) cv. Zhongdan 9409 seedlings grown under different soil moisture regimes (40–45 % and 70–75 % of soil saturated water content) were studied. Zn application did not enhance maize plant adaptation to drought stress. The relative water content and the water potential of leaves were not affected by Zn treatment. Moreover, The PN of drought-stressed plants was not improved by Zn supply. The increases of plant biomass, stomatal conductance and quantum yield of photosystem 2 due to Zn addition were notable in well-watered plants.  相似文献   

15.
The effect of salt stress on leaf morphology and functionality was studied in three Populus alba genotypes differing in tolerance to salinity: 6K3 (sensitive), 2AS11 (moderately tolerant), and 14P11 (tolerant). Plants were subjected to an intense and progressive salt stress from 50 to 250 mM NaCl by 50 mM steps at 10-day intervals. The micromorphological results highlighted phenotypic variation among the three genotypes already in control plants, with the genotype 14P11 having significantly smaller epidermal cells and higher stomatal density. Salt-treated plants modulated differently the expansion of stomata compared with epidermal cells. Regression analysis showed significant correlations between decrease of stomatal area and stomatal conductance (gs) in genotypes 14P11 and 6K3. So, the common reduction of stomatal area could be an early mechanism to save water in this species. However, only genotype 14P11 showed further significant decrease of this trait under the highest salinity level, combined with a significant reduction in leaf length. In addition, this genotype showed the lowest leaf abscission rate at the end of salt stress period. The genotype 6K3 was severely affected by leaf necrosis and showed the highest leaf abscission rate in salt stress conditions. In the moderately tolerant genotype 2AS11, an intermediate plastic behaviour in both leaf morphology and physiology was observed during the experiment. The phenotypic variation among the three genotypes in terms of micromorphology and stomatal conductance is discussed in relation to plant functionality in salt stress conditions. Overall results suggest that leaf morphological habit contributes to salt tolerance in P. alba.  相似文献   

16.
通过水分控制实验,研究不同土壤水分条件对白及(Bletilla striata(Thunb.ex A.Murray)Rchb.f.)光合作用、叶片解剖结构、生物量和多糖含量的影响。结果表明,低水分处理不仅使白及的最大光合速率、气孔导度、光反应中心Ⅱ活性及叶绿素含量等参数降低;也使叶肉层变薄、上表皮增厚、生物量和多糖含量下降。气孔导度降低是白及在低水分条件下光合能力下降的主要原因。低水分条件可引起白及光合碳同化能力下降,导致生物量和多糖积累减少,进而影响白及的产量和品质。  相似文献   

17.
Gas exchange, chlorophyll (Chl) fluorescence, and contents of some metabolites in two genotypes of jasmine (Jasminum sambac), single petal (SP) and double petal (DP) one, were analyzed during dehydration and re-hydration. Water stress significantly decreased net photosynthetic rate, stomatal conductance, and maximum photochemical efficiency (Fv/Fm) in both jasmine genotypes, but increased minimum fluorescence (F0) only in DP-jasmine. Water stress also decreased starch content, while increased contents of total soluble sugars and proline in leaves of both genotypes. SP-jasmine demonstrated higher drought tolerance as evidenced by maintaining higher gas exchange and photochemical efficiency and lower alteration of metabolites than DP-jasmine. Recovery analysis revealed that drought-induced injury in photosynthetic machinery in jasmine plants was reversible. DP-jasmine exhibited a slow recovery of drought-induced impairment in photosynthetic activity and associated metabolites, suggesting that this genotype had lower capacity to adapt to water limited condition. Higher yield stability of SP-than that of DP-jasmine under rain-fed condition finally confirmed higher drought tolerance of SP-jasmine.  相似文献   

18.
Z.-Z. Xu  G.-S. Zhou 《Plant and Soil》2005,269(1-2):131-139
Water deficit and high temperature are important environmental factors restricting plant growth and photosynthesis. The two stresses often occur simultaneously, but their interactions on photosynthesis and nitrogen level have been less studied. In the present experiment, we measured photosynthetic parameters, stomatal density, and nitrogen levels, as well as soluble sugar content of leaves of a perennial grass, Leymus chinensis, experiencing two day/night temperature regimes of 30/20 °C and 30/25 °C, and five different soil moisture contents (the soil relative-water content ranged from 80% to 25%). Leaf relative water content, leaf biomass, whole plant biomass, the ratio between the leaf biomass and total plant biomass, and the photosynthetic rate, as well as water-use efficiency decreased at high night temperature, especially under severe water stress conditions. Stomatal index was also increased by soil water stress except very severe water stress, and high nocturnal temperature decreased the leaf stomatal index under soil water stress. Nocturnal warming decreased nitrogen concentration in the leaves and increased it in the roots, particularly when plants were subjected to severe water stress. There were significant positive correlations between the photosynthetic rate and both soluble sugar concentration and nitrogen concentration at low nocturnal temperature. It is suggested that nocturnal warming significantly exacerbates the adverse effects of soil water stress, and their synergistic interactions might reduce the plant productivity and constrain its distribution in the region dominated by L. chinensis, based on predictions of global climate change.  相似文献   

19.
The effect of water stress on plant water status and net photosynthetic gas exchange (PN) in six barley genotypes (Hordeum vulgare L.) differing in productivity and drought tolerance was studied in a controlled growth chamber. Osmotic adjustment (OA), PN, stomatal conductance (gs), and the ratio intercellular/ambient. CO2 concentration (Ci/Ca) were evaluated at four different levels of soil water availability, corresponding to 75, 35, 25 and 15 % of total available water. Variability in OA capacity was observed between genotypes: the drought tolerant genotypes Albacete and Alpha showed higher OA than drought susceptible genotypes Express and Mogador. The genotype Albacete exhibited also higher PN than the others at low water potential (Ψ). The ratios of PN/gs and Ci/Ca showed that differences in photosynthetic inhibition between genotypes at low Ψ were probably due to nonstomatal effects. In Tichedrett, a landrace genotype with a very extensive root development, OA was not observed, however, it exhibited a capacity to maintain its photosynthetic activity under water stress. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Physiological and growth measurements were made on forbs and graminoids following additions of water and N+water in a graminoid-dominated dry meadow and a forb-dominated moist meadow, to determine if the community-level response was related to differential responses between the growth forms. Graminoids had higher photosynthetic rates and lower transpiration rates and foliar N concentrations than forbs, and consequently maintained higher photosynthetic N- and water-use efficiencies. Photosynthetic rates, stomatal conductance, and transpiration rates increased significantly only in response to N fertilization and only in moist meadow species. The increase in photosynthetic rates was unrelated to variation in foliar N concentration, but instead correlated with variation in stomatal conductance. Growth based N-use efficiency was higher in moist meadow graminoids than in moist meadow forbs, but did not differ between the growth forms in the dry meadow. The moist meadow community had higher biomass and N standing crops, but the relative increase in these factors in response to N fertilization was greater in the dry meadow. Graminoids had a greater relative increase in biomass and N accumulation than forbs following N fertilization, but moist meadow graminoids exhibited a greater response than dry meadow graminoids. The difference in the growth response between the dry meadow and moist meadow graminoids to N fertilization was correlated with more conservative leaf gas exchange responses in dry meadow species, presumably related to a higher frequency of soil water deficits in this community. Community-level response to the resource additions was therefore mediated by the plant growth form response, corresponding with differences between the growth forms in physiological factors related to resource acquisition and use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号