首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Appropriate maintenance and regeneration of adult endocrine organs is important in both normal physiology and disease. We investigated cell proliferation, movement and differentiation in the adult mouse adrenal cortex, using different 5-bromo-2''-deoxyuridine (BrdU) labelling regimens and immunostaining for phenotypic steroidogenic cell markers. Pulse-labelling showed that cell division was largely confined to the outer cortex, with most cells moving inwards towards the medulla at around 13-20 µm per day, though a distinct labelled cell population remained in the outer 10% of the cortex. Pulse-chase-labelling coupled with phenotypic immunostaining showed that, unlike cells in the inner cortex, most BrdU-positive outer cortical cells did not express steroidogenic markers, while co-staining for BrdU and Ki67 revealed that some outer cortical BrdU-positive cells were induced to proliferate following acute adrenocorticotropic hormone (ACTH) treatment. Extended pulse-chase-labelling identified cells in the outer cortex which retained BrdU label for up to 18-23 weeks. Together, these observations are consistent with the location of both slow-cycling stem/progenitor and transiently amplifying cell populations in the outer cortex. Understanding the relationships between these distinct adrenocortical cell populations will be crucial to clarify mechanisms underpinning adrenocortical maintenance and long-term adaptation to pathophysiological states.  相似文献   

2.
Summary We have developed a method that separates rat adrenocortical cells by density into populations which retain zone specific properties in primary culture. Two different parenchymal populations were obtained and designated 2FASC (1.034 g/ml, 18.0 μm cell diameter) and 7GLOM (1.069 g/ml, 11.7 μm cell diameter). In freshly isolated cell suspensions the physical characteristics and differential steroidogenic responses to adrenocorticotropin and angiotensin II suggested that 2FASC cells originated predominantly from the zona fasciculata and 7GLOM cells from the zona glomerulosa. In primary culture (Dulbecco's Modified Eagle's Medium-F12 medium with 15% horse serum and 2.5% fetal bovine serum) the two populations exhibited different morphologies. 2FASC cells retained lipid and formed cohesive epithelial monolayers that remained stationary for 3 wk. 7GLOM cells were initially epithelial but rapidly lost lipid, spread, and assumed fibroblastic shapes. Both cell types were ositive for the cholesterol side-chain cleavage cytochrome P-450 by immunofluorescence. Therefore, the morphologic changes seen in 7GLOM cultures were due to modulation, not fibroblastic overgrowth. This phenotypic plasticity may reflect the mesodermal origin of the adrenal cortex, and the subcapsular location of 7GLOM cells in vivo. In contrast, cells such as 2FASC which are located deeper in the cortex seem to have a more restricted, fully committed parenchymal phenotype. This work was supported by a studentship to C. D. R., and by a grant and research associateship to N. A., from the National Cancer Institute of Canada.  相似文献   

3.
Son MY  Kim HJ  Kim MJ  Cho YS 《PloS one》2011,6(5):e19134
Spherical three-dimensional cell aggregates called embryoid bodies (EBs), have been widely used in in vitro differentiation protocols for human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Recent studies highlight the new devices and techniques for hEB formation and expansion, but are not involved in the passaging or subculture process. Here, we provide evidence that a simple periodic passaging markedly improved hEB culture condition and thus allowed the size-controlled, mass production of human embryoid bodies (hEBs) derived from both hESCs and hiPSCs. hEBs maintained in prolonged suspension culture without passaging (>2 weeks) showed a progressive decrease in the cell growth and proliferation and increase in the apoptosis compared to 7-day-old hEBs. However, when serially passaged in suspension, hEB cell populations were significantly increased in number while maintaining the normal rates of cell proliferation and apoptosis and the differentiation potential. Uniform-sized hEBs produced by manual passaging using a 1∶4 split ratio have been successfully maintained for over 20 continuous passages. The passaging culture method of hEBs, which is simple, readily expandable, and reproducible, could be a powerful tool for improving a robust and scalable in vitro differentiation system of human pluripotent stem cells.  相似文献   

4.
Following our recent findings on the presence of human cytomegalovirus (HCMV) in the normal human adrenal cortex and in adrenocortical tumors, especially in cortisol‐secreting tumors, aim of the present study was to investigate the direct effects of HCMV infection on human adrenocortical cells. To this aim, both clinical isolates and laboratory strains of HCMV were used to assess the early effects of infection on human adrenocortical cell morphology, proliferation, gene expression, and steroidogenic function. Both clinical and laboratory HCMV strains could infect and replicate in primary human adrenocortical cell cultures and in adrenocortical carcinoma cell lines, leading to cytopathic changes. Most importantly, in the first hours post‐infection (p.i.), adrenocortical cells showed a significant increase of cortisol and estrogen production, paralleled by up‐regulation of steroidogenic acute regulatory protein and expression of steroidogenic enzymes involved in the last steps of adrenal steroidogenesis. This effect was probably due to HCMV immediate‐early gene expression, since it was most evident in the early phases p.i. and UV‐inactivated viral particles did not affect hormone production. Moreover, the effect on steroidogenesis was HCMV specific, since it was not observed after infection with herpes simplex virus. These data suggest that human adrenocortical cells are permissive to HCMV infection and acutely respond to infection with increased cortisol production. An acute glucocorticoid response is typically triggered by infections and is considered to be critical to host defense against pathogens, although, in the case of HCMV infection, it might also enhance viral replication and reactivation from latency. J. Cell. Physiol. 221: 629–641, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Summary A method of primary tissue culture involving both disaggregation of cells by repeated exposure of small tissue fragments to a solution of trypsin, collagenase and hyaluronidase and explantation of the residual tissue fragments intermingled with isolated cells onto polyethylene discs, has been shown to be adequate for the prolonged maintenance (up to 30 days) in vitro of cells arising from decapsulated adult human adrenocortical tissue. The technique and its critical points are discussed.Adrenocortical cells were organized both as outgrowing columns from microexplants or as variously sized islets of monolayered cells. The ultrastructural features of ACTH-deprived adrenocortical cells (i.e., mitochondria with laminar cristae, endoplasmic reticulum mainly consisting of rough profiles, abundance of lipid droplets and -glycogen particles) suggest that the cells dedifferentiate and retain practically no steroidogenic activity.After 2 days of ACTH-treatment, cultured parenchymal cells were found to be quite similar to the zona fasciculata elements of the normal human adrenal cortex. They were grouped in islets of about 50–100 cells. Rough endoplasmic reticulum had decreased, but smooth endoplasmic reticulum showed focal proliferation. The pleomorphic mitochondria with laminar cristae, transformed into a homogeneous population of round or ovoid mitochondria containing tubulo-vesicular cristae. Lipid droplets and glycogen particles were decreased in number.After 7 days of daily treatment with ACTH, the cortical elements, whose nucleus and cytoplasm seemed to be enlarged, were arranged in clusters formed by up to 300 monolayered elements, in which dividing cells were consistently observed. Their cytoplasm was filled with a meshwork of smooth reticulum tubules, in which scantly ribosome-studded profiles and occasional small stacks of granular cisternae were embedded. Mitochondria were similar to those of the 2 days ACTH-treated cultures. Lipid droplets and glycogen particles were absent. The functional significance of these structural changes as well as the possible mechanism underlying the differentiative effect of ACTH are discussed.Primary cultures of human adult adrenals are proposed as a new tool for studies into the physiopathology of the adrenocortical cells under carefully controlled experimental conditions.mis|It is a pleasure to acknowledge our thanks to Drs. F. Mantero and C. Eccher for kindly supplying the normal human adrenocortical tissue. Thanks are also due to Mr. G. Gottardo for his excellent technical assistance.mis|This work was partly supported by a contract with the CNR-Italy (C.T. 73.00663.04).A preliminary report on part of this work was given at the Annual Meeting of the European Tissue Culture Society, Genua, May 1974, and at the Annual Meeting of the Société Française de Microscopie Electronique, Rennes, May 1974, and published as short communication in The Journal of Endocrinology 63, 247, 1974.  相似文献   

6.
Difluoromethylornithine (DFMO), a selective inhibitor of ornithine decarboxylase, was used to probe the possible role of polyamines in the regulation of proliferation and steroidogenic activities of bovine adrenocortical cells in primary culture. The presence of DFMO in the culture medium not only suppressed the polyamine increase observed in proliferating control cells but resulted in a rapid depletion of the putrescine and spermidine cellular content, while spermine remained at a basal level. The proliferation of DFMO-treated cells was rapidly blocked and resumed at a normal rate upon addition of putrescine to the medium. DFMO-treated cells showed an impaired steroidogenic response to ACTH while adenylate cyclase stimulation was not altered. Thus, while ornithine decarboxylase and polyamines may be required for adrenocortical cell replication, deprivation of these compounds did not facilitate the expression of differentiated cell functions, as observed with granulosa cells.  相似文献   

7.
8.
9.
Embryonic stem (ES)-like cells were isolated from in vivo-produced cat embryos. Total of 101 blastocysts were collected from female cats. The inner cell mass (ICM) were mechanically isolated and cultured on mitomycin-C-treated cat embryonic fibroblast feeder layers in medium supplemented with knockouttrade mark Serum Replacement (KSR-medium) or fetal bovine serum (FBS-medium). Putative ES-like cell colonies developed in both KSR- and FBS-medium conditions, but formed domed and flat colonies, respectively. ICM cell attachment and ES-like cell colony formation were significantly higher in KSR-medium, but subsequent cell proliferation was significantly lower than in FBS-medium. For passaging, 32 and 18 colonies in KSR- and FBS-medium were separated by enzymatic dissociation or mechanical disaggregation. Enzymatic dissociation resulted in cell differentiation; however, mechanical disaggregation generated cells that remained undifferentiated over more than four passages and yielded two cat ES-like cell lines that continued to grow for up to eight passages in FBS-medium. These cells had typical stem cell morphology, expressed high levels of alkaline phosphatase activity, and were positive for the ES cell-markers Oct-4, stage-specific embryonic antigen-1 (SSEA-1), SSEA-3, and SSEA-4. These cells formed embryoid bodies (EBs) in suspension culture after extended suspension culture. When simple EBs were cultured on tissue culture plates, they differentiated into several cell types, including epithelium-like and neuron-like cells. In addition, EBs were positive for mesoderm marker, desmin. After prolonged in vitro culture, some colonies spontaneously differentiated into beating myocardiocytes, and were positive for alpha-actinin. These observations indicate that cat ES-like cells were successfully isolated and characterized from in vivo-produced blastocysts.  相似文献   

10.
Progenitor cells of the testosterone-producing Leydig cells revealed   总被引:1,自引:0,他引:1  
The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.  相似文献   

11.
Jin M  Wu A  Dorzhin S  Yue Q  Ma Y  Liu D 《Cytotechnology》2012,64(4):379-389
Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts were used, a mechanical method of passaging led to better cell growth than passaging by trypsin digestion. We also found that exogenous supplementation with leukemia inhibitory factor maintained the embryonic stem cell-like cells in an undifferentiated state, whereas addition of stem cell factor resulted in their differentiation. Our findings provide an experimental basis for the establishment of an effective culture system for bovine embryonic stem cells.  相似文献   

12.
Adult Leydig cells originate within the testis postnatally. Their formation is a continuous process involving gradual transformation of progenitors into the mature cell type. Despite the gradual nature of these changes, studies of proliferation, differentiation and steroidogenic function in the rat Leydig cell led to the recognition of three distinct developmental stages in the adult Leydig cell lineage: Leydig cell progenitors, immature Leydig cells and adult Leydig cells. In the first stage, Leydig cell progenitors arise from active proliferation of mesenchymal-like stem cells in the testicular interstitium during the third week of postnatal life and are recognizable by the presence of Leydig cell markers such as histochemical staining for 3β-hydroxysteroid dehydrogenase (3β-HSD) and the present of luteinizing hormone (LH) receptors. They proliferate actively and by day 28 postpartum differentiate into immature Leydig cells. In the second stage, immature Leydig cells are morphologically recognizable as Leydig cells. They have an abundant smooth endoplasmic reticulum and are steroidogenically active, but primarily produce 5-reduced androgens rather than testosterone. Immature Leydig cells divide only once, giving rise to the total adult Leydig cell population. In the third and final stage, adult Leydig cells are fully differentiated, primarily produce testosterone and rarely divide. LH and androgen act together to stimulate differentiation of Leydig cell progenitors into immature Leydig cells. Preliminary data indicate that insulin like growth factor-1 (IGF-1) acts subsequently in the transformation of immature Leydig cells into adult Leydig cells.  相似文献   

13.
We have previously described a method for the primary culture of adult large intestinal epithelium, suggesting that stem cells had survived both the isolation and the culture procedures. However, as no markers for such cells exist, confirmation of stem cell survival is difficult-only the functional properties can be used to define them. Unfortunately, many of these (e.g., differentiation, crypt regeneration) do not occur in culture, probably due to suboptimal conditions. To address this problem both freshly isolated and cultured small and large intestinal crypts were grown subcutaneously in an immunocompromized mouse. All initially formed cysts lined by a simple epithelium which gradually became multicellular and formed invaginations containing many mitoses and apoptoses. Epithelial differentiation, as assayed by Goblet cell mucin production, was also apparent. Mucin maturation was also typical of the normal intestine. The lumen was frequently filled with mucin and apoptotic bodies. Interestingly, in grafts displaying pronounced crypt-like morphology the regions of proliferation were situated toward the base of the structure and the Goblet cells toward the lumen, i.e., a typical crypt-like morphology. Hence, functional adult stem cells appear to survive isolation and tissue culture, permitting organotypic regeneration, possibly involving homeobox gene expression. This may now allow direct stem cell characterization and experimental manipulation, such as transfection, and may ultimately permit transplantation and therapeutic gene therapy.  相似文献   

14.
Summary The proliferation rate of differentiating fetal rat adrenocortical cells was studied in primary culture. In this system, stimulation with ACTH induces differentiation of zona glomerulosa-like cortical cells into zona fasciculata-like cells. Incorporation of bromodeoxyuridine (BrdU) was studied immunocytochemically by use of anti-BrdU antibody, and the proliferation rate was counted from the monolayer colonies of adrenocortical cells. After 21 days of cultivation in the absence of ACTH, the proliferation rate of zona glomerulosa-like cells was 10%. The rate slowly declined to 1% at the age of 100 days during continuous cultivation in the absence of ACTH. Stimulation with ACTH induced a strong inhibition in the proliferation rate (down to 2% during the first 24 h). Treatment with ACTH during the following 48 h led to an extremely intense proliferation of adrenocortical cells at a proliferation rate of 25%. Continuous treatment with ACTH up to 100 days led to a persistent growth of adrenocortical cells, and a proliferation rate over 2-fold higher than in control cells cultivated in the absence of ACTH. Thus, ACTH is the principal growth-promoting factor also in vitro, as has been found in in vivo studies. This growth effect is mediated by a biphasic course; at the beginning of differentiation the effect is inhibitory and is followed by a persistent stimulation of the growth of adrenocortical cells.  相似文献   

15.
The human adipose tissue is a source of multipotent stem cells   总被引:36,自引:0,他引:36  
Multipotent stem cells constitute an unlimited source of differentiated cells that could be used in pharmacological studies and in medicine. Recently, several publications have reported that adipose tissue contains a population of cells able to differentiate into different cell types including adipocytes, osteoblasts, myoblasts, and chondroblasts. More recently, stem cells with a multi-lineage potential at the single cell level have been isolated from human adipose tissue. These cells, called human Multipotent Adipose-Derived Stem (hMADS) cells, have been established in culture and interestingly, maintain their characteristics with long-term passaging. The adipocyte differentiation of hMADS cells has been thoroughly studied and differentiated cells exhibit the unique feature of human adipocytes. Finally, potential applications of stem cells isolated from adipose tissue in medicine will be discussed.  相似文献   

16.
17.
Potential of embryonic and adult stem cells in vitro   总被引:3,自引:0,他引:3  
Recent developments in the field of stem cell research indicate their enormous potential as a source of tissue for regenerative therapies. The success of such applications will depend on the precise properties and potentials of stem cells isolated either from embryonic, fetal or adult tissues. Embryonic stem cells established from the inner cell mass of early mouse embryos are characterized by nearly unlimited proliferation, and the capacity to differentiate into derivatives of essentially all lineages. The recent isolation and culture of human embryonic stem cell lines presents new opportunities for reconstructive medicine. However, important problems remain; first, the derivation of human embryonic stem cells from in vitro fertilized blastocysts creates ethical problems, and second, the current techniques for the directed differentiation into somatic cell populations yield impure products with tumorigenic potential. Recent studies have also suggested an unexpectedly wide developmental potential of adult tissue-specific stem cells. Here too, many questions remain concerning the nature and status of adult stem cells both in vivo and in vitro and their proliferation and differentiation/transdifferentiation capacity. This review focuses on those issues of embryonic and adult stem cell biology most relevant to their in vitro propagation and differentiation. Questions and problems related to the use of human embryonic and adult stem cells in tissue regeneration and transplantation are discussed.  相似文献   

18.
19.
Mesenchymal stem cells (MSC) are able to transdifferentiate into cells with different functional phenotypes and considered as a promising resource for regenerative therapy. MSC derived from different tissues vary in their differentiation potential and in some cases express tissue specific markers indicating a kinship between mesenchymal and parenchymal phenotypes in the same tissue. It is possible that homorganic MSC can be more effectively induced to tissue specific differentiation and preferable for cell therapy of this organ as compared with bone marrow derived cells being commonly used for this purpose. Using bladder tissue explants, we prepared primary MSC cultures from the fetal (MSC-BF) and adult syngenic BALB/c mice and characterized their abilities during long-term passaging. In contrast to the cells from adult mice, the MSC-BF cells have the ability for a sustained growth in vitro, clonogenicity and differentiation into adipose and bone cells. Similar to the bone marrow MSC, MSC-BF express the mesenchymal markers CD29, CD44, CD49f, CD90, CD105 but not the leukocyte common antigen CD45. In normal conditions, MSC-BF produce such urothelial markers as CK14 and FOXA1 although their expression level is by far lower than in the bladder tissue. The hypomethylating agent, 5-azacytidine, induces in MSC-BF the expression of the urothelial differentiation activator PPARγ and the functional urothelium markers UP1a, UP1b, UP3a, UP3b. The data obtained suggest that MSC-BF can be epigenetically reprogrammed into urothelium by the 5-azacytidine treatment, and this may offer the novel strategy for cell therapy of bladder diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号