首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adult neurogenesis is impaired by inflammatory processes, which are linked to altered cholinergic signalling and cognitive decline in Alzheimer's disease. In this study, we investigated how amyloid beta (Aβ)‐evoked inflammatory responses affect the generation of new neurons from human embryonic stem (hES) cells and the role of cholinergic signalling in regulating this process. The hES were cultured as neurospheres and exposed to fibrillar and oligomeric Aβ1‐42 (Aβf, AβO) or to conditioned medium from human primary microglia activated with either Aβ1‐42 or lipopolysaccharide. The neurospheres were differentiated for 29 days in vitro and the resulting neuronal or glial phenotypes were thereafter assessed. Secretion of cytokines and the enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and choline acetyltransferase (ChAT) involved in cholinergic signalling was measured in medium throughout the differentiation. We report that differentiating neurospheres released various cytokines, and exposure to Aβf, but not AβO, increased the secretion of IL‐6, IL‐1β and IL‐2. Aβf also influenced the levels of AChE, BuChE and ChAT in favour of a low level of acetylcholine. These changes were linked to an altered secretion pattern of cytokines. A different pattern was observed in microglia activated by Aβf, demonstrating decreased secretion of TNF‐α, IL‐1β and IL‐2 relative to untreated cells. Subsequent exposure of differentiating neurospheres to Aβf or to microglia‐conditioned medium decreased neuronal differentiation and increased glial differentiation. We suggest that a basal physiological secretion of cytokines is involved in shaping the differentiation of neurospheres and that Aβf decreases neurogenesis by promoting a microenvironment favouring hypo‐cholinergic signalling and gliogenesis.  相似文献   

2.
Several studies have shown that the accumulation of β‐amyloid peptides in the brain parenchyma or vessel wall generates an inflammatory environment. Some even suggest that there is a cause‐and‐effect relationship between inflammation and the development of Alzheimer's disease and/or cerebral amyloid angiopathy (CAA). Here, we studied the ability of wild‐type Aβ1‐40‐peptide (the main amyloid peptide that accumulates in the vessel wall in sporadic forms of CAA) to modulate the phenotypic transition of vascular smooth muscle cells (VSMCs) toward an inflammatory/de‐differentiated state. We found that Aβ1‐40‐peptide alone neither induces an inflammatory response, nor decreases the expression of contractile markers; however, the inflammatory response of VSMCs exposed to Aβ1‐40‐peptide prior to the addition of the pro‐inflammatory cytokine IL‐1β is greatly intensified compared with IL‐1β‐treated VSMCs previously un‐exposed to Aβ1‐40‐peptide. Similar conclusions could be drawn when tracking the decline of contractile markers. Furthermore, we found that the mechanism of this potentiation highly depends on an Aβ1‐40 preactivation of the PI3Kinase and possibly NFκB pathway; indeed, blocking the activation of these pathways during Aβ1‐40‐peptide treatment completely suppressed the observed potentiation. Finally, strengthening the possible in vivo relevance of our findings, we evidenced that endothelial cells exposed to Aβ1‐40‐peptide generate an inflammatory context and have similar effects than the ones described with IL‐1β. These results reinforce the idea that intraparietal amyloid deposits triggering adhesion molecules in endothelial cells, contribute to the transition of VSMCs to an inflammatory/de‐differentiated phenotype. Therefore, we suggest that acute inflammatory episodes may increase vascular alterations and contribute to the ontogenesis of CAA.  相似文献   

3.
Alzheimer disease is a neurodegenerative disease affecting an increasing number of patients worldwide. Current therapeutic strategies are directed to molecules capable to block the aggregation of the β‐amyloid(1‐42) (Aβ) peptide and its shorter naturally occurring peptide fragments into toxic oligomers and amyloid fibrils. Aβ‐specific antibodies have been recently developed as powerful antiaggregation tools. The identification and functional characterization of the epitope structures of Aβ antibodies contributes to the elucidation of their mechanism of action in the human organism. In previous studies, the Aβ(4‐10) peptide has been identified as an epitope for the polyclonal anti‐Aβ(1‐42) antibody that has been shown capable to reduce amyloid deposition in a transgenic Alzheimer disease mouse model. To determine the functional significance of the amino acid residues involved in binding to the antibody, we report here the effects of alanine single‐site mutations within the Aβ‐epitope sequence on the antigen‐antibody interaction. Specific identification of the essential affinity preserving mutant peptides was obtained by exposing a Sepharose‐immobilized antibody column to an equimolar mixture of mutant peptides, followed by analysis of bound peptides using high‐resolution MALDI‐Fourier transform‐Ion Cyclotron Resonance mass spectrometry. For the polyclonal antibody, affinity was preserved in the H6A, D7A, S8A, and G9A mutants but was lost in the F4, R5, and Y10 mutants, indicating these residues as essential amino acids for binding. Enzyme‐linked immunosorbent assays confirmed the binding differences of the mutant peptides to the polyclonal antibody. In contrast, the mass spectrometric analysis of the mutant Aβ(4‐10) peptides upon affinity binding to a monoclonal anti‐Aβ(1‐17) antibody showed complete loss of binding by Ala‐site mutation of any residue of the Aβ(4‐10) epitope. Surface plasmon resonance affinity determination of wild‐type Aβ(1‐17) to the monoclonal Aβ antibody provided a binding constant KD in the low nanomolar range. These results provide valuable information in the elucidation of the binding mechanism and the development of Aβ‐specific antibodies with improved therapeutic efficacy.  相似文献   

4.
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β‐protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long‐term treatment with nonsteroidal anti‐inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX‐2). Although the levels of COX‐2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human‐ or mouse‐derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX‐2 mediates the reciprocal regulation of interleukin‐1β (IL‐1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX‐2 regulates the synthesis of IL‐1β in a PGE2‐dependent manner. Moreover, COX‐2‐derived PGE2 signals the activation of the PI3‐K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF‐κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL‐1β synthesis. The secretion of IL‐1β from glioblastoma cells in turn stimulates the expression of COX‐2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX‐2 regulation of BACE‐1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX‐2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX‐2‐induced AD but also initially define the therapeutic targets of AD.  相似文献   

5.
The purpose of our study was to evaluate the protective effect of melatonin in a rat model of caerulein‐induced acute pancreatitis. For the induction of experimental acute pancreatitis, four subcutaneous injections of caerulein (20 µg kg–1 body weight) were given to Wistar rats at 2‐h intervals. Melatonin was injected intraperitoneally (25 mg kg–1 body weight) 30 min before each caerulein injection. After 12 h, rats were sacrificed by decapitation. Blood and pancreas samples were collected and processed for serological and histopathological studies, respectively. Lipase, α‐amylase, corticosterone, total antioxidant power and cytokines interleukin (IL)‐1β, IL‐4 and tumour necrosis factor (TNF)‐α were determined using commercial kits. ANOVA and Tukey tests (P < 0.05) were performed for the statistical analysis of the results. Results showed that the administration of melatonin reduced histological damage induced by caerulein treatment as well as the hyperamylasemia and hyperlipidemia. Corticosterone and antioxidant total power were also reverted to basal activities. Furthermore, melatonin pre‐treatment reduced pro‐inflammatory cytokines IL‐1β and TNF‐α and increased the serum levels of anti‐inflammatory cytokine IL‐4. In conclusion, the findings suggest that the protective effect of melatonin in caerulein‐induced acute pancreatitis is mediated by the anti‐inflammatory ability of this indolamine. Thus, melatonin may have a protective effect against acute pancreatitis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We have previously reported that dietary docosahexaenoic acid (DHA) improves and/or protects against impairment of cognition ability in amyloid beta1‐40 (Aβ1‐40)‐infused Alzheimer’s disease (AD)‐model rats. Here, after the administration of DHA to AD model rats for 12 weeks, the levels of Aβ1‐40, cholesterol and the composition of fatty acids were investigated in the Triton X100‐insoluble membrane fractions of their cerebral cortex. The effects of DHA on the in vitro formation and kinetics of fibrillation of Aβ1‐40 were also investigated by thioflavin T fluorescence spectroscopy, transmission electron microscopy and fluorescence microscopy. Dietary DHA significantly decreased the levels of Aβ1‐40, cholesterol and saturated fatty acids in the detergent insoluble membrane fractions of AD rats. The formation of Aβ fibrils was also attenuated by their incubation with DHA, as demonstrated by the decreased intensity of thioflavin T‐derived fluorescence and by electron micrography. DHA treatment also decreased the intensity of thioflavin fluorescence in preformed‐fibril Aβ peptides, demonstrating the anti‐amyloidogenic effects of DHA. We then investigated the effects of DHA on the levels of oligomeric amyloid that is generated during its in vitro transformation from monomers to fibrils, by an anti‐oligomer‐specific antibody and non‐reducing Tris‐Glycine gradient (4–20%) gel electrophoresis. DHA concentration‐dependently reduced the levels of oligomeric amyloid species, suggesting that dietary DHA‐induced suppression of in vivo1‐40 aggregation occurs through the inhibitory effect of DHA on oligomeric amyloid species.  相似文献   

7.
X‐linked adrenoleukodystrophy (X‐ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X‐ALD, we aimed to investigate pro‐ and anti‐inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro‐inflammatory cytokines IL‐1β, IL‐2, IL‐8, and TNF‐α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti‐inflammatory cytokines IL‐4 and IL‐10. AMN patients presented higher levels of IL‐2, IL‐5, and IL‐4. We might hypothesize that inflammation in X‐ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro‐inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti‐inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL‐2, IL‐6, and IFN‐γ), Th2 (IL‐4 and IL‐10), and macrophages response (TNF‐α and IL‐1β) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X‐ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.  相似文献   

8.
Cationic materials exhibit remarkable anti‐inflammatory activity in experimental arthritis models. Our aim was to confirm this character of cationic materials and investigate its possible mechanism. Adjuvant‐induced arthritis (AIA) models were used to test cationic materials for their anti‐inflammatory activity. Cationic dextran (C‐dextran) with different cationic degrees was used to investigate the influence of the cationic elements of materials on their anti‐inflammatory ability. Peritoneal macrophages and spleen cells were used to test the expression of cytokines stimulated by cationic materials. Interferon (IFN)‐γ receptor‐deficient mice and macrophage‐depleted rats were used to examine the possible mechanisms of the anti‐inflammatory activity of cationic materials. In AIA models, different cationic materials shared similar anti‐inflammatory characters. The anti‐inflammatory activity of C‐dextran increased with as the cationic degree increased. Cationic materials stimulated interleukin (IL)‐12 expression in peritoneal macrophages, and strong stimulation of IFN‐γ secretion was subsequently observed in spleen cells. In vivo experiments revealed that circulating IL‐12 and IFN‐γ were enhanced by the cationic materials. Using IFN‐γ receptor knockout mice and macrophage‐depleted rats, we found that IFN‐γ and macrophages played key roles in the anti‐inflammatory activity of the materials towards cells. We also found that neutrophil infiltration at inflammatory sites was reduced when AIA animals were treated with C‐dextran. We propose that cationic signals act through an unknown receptor on macrophages to induce IL‐12 secretion, and that IL‐12 promotes the expression of IFN‐γ by natural killer cells (or T cells). The resulting elevated systemic levels of IFN‐γ inhibit arthritis development by preventing neutrophil recruitment to inflammatory sites.  相似文献   

9.
Aims: To evaluate the immunosuppressive properties of the exopolysaccharide (EPS) from high‐EPS producer Lactobacillus rhamnosus RW‐9595M on inflammatory cytokines produced by macrophages. Methods and Results: The conditioned media (CM) were produced by macrophages treated with parental Lact. rhamnosus ATCC 9595 and its isogenic variant, the high‐EPS producer Lact. rhamnosus RW‐9595M, and the levels of TNF‐α, IL‐6, IL‐10 and IL‐12 were evaluated. Results revealed that CM from parental Lact. rhamnosus induced higher levels of TNF‐α, IL‐6 and IL‐12 but inhibited IL‐10 production, whereas its mucous variant induced low or no TNF‐α and IL‐6. Addition of purified EPS to macrophages treated with parental Lact. rhamnosus decreased the inflammatory cytokines and inhibited the metabolic activity of lymphocytes. The intermediate polysaccharide chains (16–30 units) produced by time‐controlled hydrolysis of EPS increased the IL‐10 produced by macrophages. Conclusions: Polysaccharide chains of EPS induced immunosuppression by the production of macrophagic anti‐inflammatory IL‐10. Significance and impact of the Study: These results indicate that the EPS from Lact. rhamnosus RW‐9595M may be useful as a new immunosuppressive product in dairy food.  相似文献   

10.
Alzheimer β‐amyloid (Aβ) peptides can self‐organize into oligomeric ion channels with high neurotoxicity potential. Cholesterol is believed to play a key role in this process, but the molecular mechanisms linking cholesterol and amyloid channel formation have so far remained elusive. Here, we show that the short Aβ22‐35 peptide, which encompasses the cholesterol‐binding domain of Aβ, induces a specific increase of Ca2+ levels in neural cells. This effect is neither observed in calcium‐free medium nor in cholesterol‐depleted cells, and is inhibited by zinc, a blocker of amyloid channel activity. Double mutations V24G/K28G and N27R/K28R in Aβ22‐35 modify cholesterol binding and abrogate channel formation. Molecular dynamic simulations suggest that cholesterol induces a tilted α‐helical topology of Aβ22‐35. This facilitates the establishment of an inter‐peptide hydrogen bond network involving Asn‐27 and Lys‐28, a key step in the octamerization of Aβ22‐35 which proceeds gradually until the formation of a perfect annular channel in a phosphatidylcholine membrane. Overall, these data give mechanistic insights into the role of cholesterol in amyloid channel formation, opening up new therapeutic options for Alzheimer's disease.

  相似文献   


11.
Vaccines based on pathogen components require adjuvants to enhance the antigen‐specific adaptive immune response. Intramuscular injection of adjuvanted‐vaccines induces inflammatory cytokines and inflammatory nodules at the injection site within 48 hr after injection (Vaccine 2014; 32 : 3393–401). In the present study, long‐term regulation of cytokine production was investigated at 3, 6, 24, and 48 hr, 5 and 7 days, and 2 and 4 weeks after immunization with human papilloma virus (HPV), diphtheria and tetanus toxoids combined with acellular pertussis (DTaP), Haemophilus influenza type B (Hib), and pneumococcal conjugated (PCV) vaccines in mouse models. The second dose was given 4 weeks later, and cytokine profiles were investigated 2, 5, and 7 days after re‐immunization. IL‐1β, IL‐6, granulocyte‐colony stimulating factor (G‐CSF), and MCP‐1 were produced from 3 hr and peaked at 48 hr after immunization with Cervarix in mice. IL‐4, MCP‐1, and TNF‐α peaked at 5 or 7 days after immunization with Gardasil. These cytokines decreased 7 days after immunization with Cervarix and Gardasil. After the second dose, similar responses were observed. Both vaccines induced neutrophil extracellular traps (NET) in inflammatory nodules. The peak amount of IL‐1β, IL‐6, G‐CSF, and MCP‐1 was observed on day 5 of immunization and that of IL‐4 on days 5‐7 of immunization with DTaP, but no increase in IL‐6 and G‐CSF was observed after re‐immunization. A similar response was noted after immunization with PCV13. An inflammatory response is essential for the development of adaptive immunity through the production of inflammatory cytokines.
  相似文献   

12.
Active immunization with amyloid-β (Aβ) peptide 1-42 reverses amyloid plaque deposition in the CNS of patients with Alzheimer's disease and in amyloid precursor protein transgenic mice. However, this treatment may also cause severe, life-threatening meningoencephalitis. Physiological responses to immunization with Aβ(1-42) are poorly understood. In this study, we characterized cognitive and immunological consequences of Aβ(1-42)/CFA immunization in C57BL/6 mice. In contrast to mice immunized with myelin oligodendrocyte glycoprotein (MOG)(35-55)/CFA or CFA alone, Aβ(1-42)/CFA immunization resulted in impaired exploratory activity, habituation learning, and spatial-learning abilities in the open field. As morphological substrate of this neurocognitive phenotype, we identified a disseminated, nonfocal immune cell infiltrate in the CNS of Aβ(1-42)/CFA-immunized animals. In contrast to MOG(35-55)/CFA and PBS/CFA controls, the majority of infiltrating cells in Aβ(1-42)/CFA-immunized mice were CD11b(+)CD14(+) and CD45(high), indicating their blood-borne monocyte/macrophage origin. Immunization with Aβ(1-42)/CFA was significantly more potent than immunization with MOG(35-55)/CFA or CFA alone in activating macrophages in the secondary lymphoid compartment and peripheral tissues. Studies with TLR2/4-deficient mice revealed that the TLR2/4 pathway mediated the Aβ(1-42)-dependent proinflammatory cytokine release from cells of the innate immune system. In line with this, TLR2/4 knockout mice were protected from cognitive impairment upon immunization with Aβ(1-42)/CFA. Thus, this study identifies adjuvant effects of Aβ(1-42), which result in a clinically relevant neurocognitive phenotype highlighting potential risks of Aβ immunotherapy.  相似文献   

13.
In our previous study, lancemaside A isolated from Codonopsis lanceolata (family Campanulaceae) ameliorated colitis in mice. In this study, the anti‐inflammatory effects of lancemaside A was investigated in lipopolysaccharide (LPS)‐stimulated mice and their peritoneal macrophage cells. Lancemaside A suppressed the production of pro‐inflammatory cytokines, TNF‐α and IL‐1β, in vitro and in vivo. Lancemaside A also down‐regulated inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2), as well as the inflammatory mediators, nitric oxide (NO), and PGE2. Lancemaside A also inhibited the expression of IL‐1 receptor‐associated kinase‐4 (IRAK‐4), the phosphorylation of IKK‐β and IκB‐α, the nuclear translocation of NF‐κB and the activation of mitogen‐activated protein kinases in LPS‐stimulated peritoneal macrophages. Furthermore, lancemaisde A inhibited the interaction between LPS and TLR4, as well as IRAK‐4 expression in peritoneal macrophages. Based on these findings, lancemaside A expressed anti‐inflammatory effects by regulating both the binding of LPS to TLR4 on macrophages. J. Cell. Biochem. 111: 865–871, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

15.
Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor‐alpha (TNF‐α) and interleukin 1β (IL‐1β). New in vitro testing systems are needed to evaluate efficacies of new anti‐inflammatory biological drugs, ideally in a patient‐specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti‐inflammatory drugs, spheroids were exposed to TNF‐α, IL‐1β, or to supernatant containing secretome from activated macrophages (MCM). The anti‐inflammatory efficacies of anti‐TNF‐α biologicals adalimumab, infliximab, and etanercept, and the anti‐IL‐1β agent anakinra were assessed in short‐term microspheroid and long‐term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF‐α or IL‐1β. The differences in potency of anti‐TNF‐α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short‐term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti‐TNF‐α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045–1058, 2018  相似文献   

16.
G‐protein‐coupled receptor kinase 2 (GRK2) is a member of a kinase family originally discovered for its role in the phosphorylation and desensitization of G‐protein‐coupled receptors. It is expressed in high levels in myeloid cells and its levels are altered in many inflammatory disorders including sepsis. To address the physiological role of myeloid cell‐specific GRK2 in inflammation, we generated mice bearing GRK2 deletion in myeloid cells (GRK2?mye). GRK2?mye mice exhibited exaggerated inflammatory cytokine/chemokine production, and organ injury in response to lipopolysaccharide (LPS, a TLR4 ligand) when compared to wild‐type littermates (GRK2fl/fl). Consistent with this, peritoneal macrophages from GRK2?mye mice showed enhanced inflammatory cytokine levels when stimulated with LPS. Our results further identify TLR4‐induced NF‐κB1p105‐ERK pathway to be selectively regulated by GRK2. LPS‐induced activation of NF‐κB1p105‐MEK‐ERK pathway is significantly enhanced in the GRK2?mye macrophages compared to GRK2fl/fl cells and importantly, inhibition of the p105 and ERK pathways in the GRK2?mye macrophages, limits the enhanced production of LPS‐induced cytokines/chemokines. Taken together, our studies reveal previously undescribed negative regulatory role for GRK2 in TLR4‐induced p105‐ERK pathway as well as in the consequent inflammatory cytokine/chemokine production and endotoxemia in mice. J. Cell. Physiol. 226: 627–637, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Murine macrophages (RAW 264.7) were allowed to interact with heat‐inactivated cells of Candida albicans SC5314 during 45 min. The proteomic response of the macrophages was then analyzed using 2‐D gel electrophoresis. Many proteins having differential expression with respect to control macrophages were identified, and their functions were related to important processes, such as cytoskeletal organization, signal transduction, metabolism, protein biosynthesis, stress response and protein fate. Several of these proteins have been described as being involved in the process of inflammation, such as Erp29, Hspa9a, AnxaI, Ran GTPase, P4hb, Clic1 and Psma1. The analysis of the consequences of their variation unravels an overall anti‐inflammatory response of macrophages during the interaction with heat‐inactivated cells. This result was corroborated by the measurement of TNF‐α and of ERK1/2 phosphorylation levels. This anti‐inflammatory effect was contrary to the one observed with live C. albicans cells, which induced higher TNF‐α secretion and higher ERK1/2 phosphorylation levels with respect to control macrophages.  相似文献   

18.
Amyloid‐β peptide (Aβ) generation initiated by β‐site amyloid precursor protein cleaving enzyme 1 BACE1 is a critical cause of Alzheimer's disease. In the course of our ongoing investigation of natural anti‐dementia resources, the ethyl acetate (EtOAc) fraction exerted strong BACE1‐specific inhibition with the half maximal inhibitory concentration (IC50) value of 9.2 × 10?5 μg/mL. Furthermore, Aβ(25–35)‐induced cell death was predominantly prevented by the EtOAc fraction of Allomyrina dichotoma larvae through diminishing of cellular oxidative stress and attenuating apoptosis by inhibiting caspase‐3 activity. Taken together, the present study demonstrated that A. dichotoma larvae possess novel neuroprotective properties not only via the selective and specific inhibition of BACE1 activity but also through the alleviation of Aβ(25–35)‐induced toxicity, which may raise the possibility of therapeutic application of A. dichotoma larvae for preventing and/or treating dementia.  相似文献   

19.
We tested directly the differences in the aggregation kinetics of three important β amyloid peptides, the full‐length Aβ1‐42, and the two N‐terminal truncated and pyroglutamil modified Aβpy3‐42 and Aβpy11‐42 found in different relative concentrations in the brains in normal aging and in Alzheimer disease. By following the circular dichroism signal and the ThT fluorescence of the solution in phosphate buffer, we found substantially faster aggregation kinetics for Aβpy3‐42. This behavior is due to the particular sequence of this peptide, which is also responsible for the specific oligomeric aggregation states, found by TEM, during the fibrillization process, which are very different from those of Aβ1‐42, more prone to fibril formation. In addition, Aβpy3‐42 is found here to have an inhibitory effect on Aβ1‐42 fibrillogenesis, coherently with its known greater infective power. This is an indication of the important role of this peptide in the aggregation process of β‐peptides in Alzheimer disease. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 861–873, 2009. This article was originally published online as an accepted preprint. The “Published Online“ date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Gamma‐secretase modulators (GSMs) include selected non‐steroidal anti‐inflammatory drugs such as flurbiprofen that selectively lowers the neurotoxic amyloid‐β peptide Aβ1–42. GSMs are attractive targets for Alzheimer’s disease, in contrast to ‘inverse GSMs,’ such as fenofibrate, which selectively increase the level of Aβ1–42. A methodology for screening of Aβ modulating drugs was developed utilizing an Aβ‐producing neuroblastoma cell line stably transfected with mutant human amyloid precursor protein, immunoprecipitation of Aβ peptides, and mass spectroscopic quantitation of Aβ1–37/Aβ1–38/Aβ1–40/Aβ1–42 using an Aβ internal standard. The unexpected conclusion of this work was that in this system, drug effects are independent of γ‐secretase. The methodology recapitulated reported results for modulation of Aβ by GSMs. However, control experiments in which exogenous Aβ1–40/Aβ1–42 was added (i) to drug‐treated wild‐type cells or (ii) to conditioned media from these wild‐type cells, gave comparable patterns of Aβ modulation. These results, suggesting that drugs modulate the ability of cell‐derived factors to degrade Aβ, was interrogated by adding protease inhibitors and performing molecular weight cut‐off fractionation. The results confirmed that modulation of Aβ1–40/Aβ1–42 was mediated by selective proteolysis. Treatment of N2a cells with flurbiprofen or fenofibric acid selectively enhanced Aβ1–42 clearance by extracellular proteolysis; treatment with HCT‐1026 or fenofibrate (esters of flurbiprofen and fenobric acid) inhibited clearance of Aβ1–40 and Aβ1–42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号