首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of human urogastrone on lung phospholipids in fetal rabbits   总被引:2,自引:0,他引:2  
Previous in vivo studies have demonstrated that mouse epidermal growth factor (EGF) can enhance fetal lung maturation. We have examined the effect of urogastrone, the human equivalent of mouse EGF and a related growth factor, on the phospholipid profile of fetal rabbit lung lavage and its action on fetal rabbit Type II pneumocytes in culture. Urogastrone (1 or 8 micrograms) given i.p. to fetal rabbits on day 25 of gestation resulted in increased total phospholipid, phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine contents, increased phosphatidylinositol and phosphatidylethanolamine as a proportion of phospholipid and decreased sphingomyelin as a proportion of phospholipid in lung lavages on day 28. These changes were unaccompanied by alterations in body weight or lung weight, DNA or protein concentrations. Urogastrone (16 micrograms) resulted in increased fetal deaths. Phospholipid profiles on day 27 were unchanged after fetal administration of urogastrone (1 microgram) on day 25. Urogastrone (0.01 and 0.1 ng/ml) added to fetal rabbit Type II pneumocytes in culture for 24 h enhanced the incorporation of radiolabelled choline and thymidine into phosphatidylcholine and DNA respectively. These findings indicate that human urogastrone can alter the phospholipid composition of the rabbit lung in a similar manner to that which occurs during maturation of the lung surfactant system in late pregnancy. This effect can be achieved, at least in part, by a direct action on Type II pneumocytes.  相似文献   

2.
Pre-type II alveolar cells isolated from the fetal rabbit lung on the 24th gestational day have been maintained in vitro for 14 days in a chemically defined medium supplemented with hormone-stripped serum. These cells replicate in culture. Measurement of the incorporation of [14C]choline into cellular disaturated phospholipid indicated that those cells grown in vitro under standard conditions for 8 days (pre-confluent) incorporate the radioactive precursor at a similar rate to cells maintained for 14 days (post-confluent). Both dexamethasone and serum-free medium conditioned by monolayer cultures of fetal rabbit lung fibroblasts stimulated [14C]choline incorporation into disaturated phosphatidylcholine (PC) by the pre- and post-confluent cultures after 24 or 48 h of exposure: the conditioned medium was more effective than the steroid. These treatments had little effect on choline incorporation into disaturated phosphatidylcholine of preconfluent cells during the first 12 h. A marked response occurred by 24 h after which the labelling of disaturated phosphatidylcholine plateaued. In contrast, with post-confluent cells labelling of disaturated PC increased in a more linear fashion and only plateaued after 72 h. Determination of the ratio of incorporation of [14C]choline into disaturated versus unsaturated phospholipid indicated that serum-free medium conditioned by monolayer cultures of fetal lung fibroblasts specifically increased the level of radioactive precursor in the disaturated phospholipid in both the pre- and post-confluent cell monolayers.  相似文献   

3.
There is a developmental increase in fatty acid biosynthesis and surfactant production in late-gestation fetal lung and both are accelerated by glucocorticoids. We have examined the distribution of the newly synthesized fatty acids to determine whether they are preferentially incorporated into surfactant. Explants of 18 day fetal rat lung were cultured with and without dexamethasone for 48 h and then with [3H]acetate for 4 h after which labeled fatty acids were measured. Incorporation of radioactivity from acetate was considered a measure of newly synthesized fatty acids. Phospholipids contained 86% of the newly synthesized fatty acids of which approx. 80% were in phosphatidylcholine. Phosphatidylcholine and disaturated phosphatidylcholine contained a much greater percentage of the labeled fatty acids than of the phospholipid mass determined by phosphorus assay while phosphatidylethanolamine, phosphatidylserine and sphingomyelin contained less. Dexamethasone increased the rate of acetate incorporation into total lipid fatty acids but it had little effect on fatty acid distribution, except that it increased the percentages in phosphatidylglycerol and disaturated phosphatidylcholine. The hormone also increased the mass of these two phospholipids to a greater extent than that of the total. These data suggested that the newly synthesized fatty acids are preferentially incorporated into surfactant phospholipids and that this process is accelerated by dexamethasone. However, since phosphatidylcholine and phosphatidylglycerol are not exclusive to surfactant, we compared isolated lamellar bodies with a residual fraction not enriched in surfactant. The rate of acetate incorporation into fatty acids in lamellar body phosphatidylcholine as well as its specific activity (radioactivity per unit phosphorus) were both increased by dexamethasone. Specific activity, however, was no greater in the lamellar bodies than in the residual fraction in both control and dexamethasone-treated cultures. Therefore, there is no preferential incorporation of newly synthesized fatty acids into phospholipids in surfactant as opposed to those in other components of the lung.  相似文献   

4.
To determine whether type II pneumocytes isolated from diabetic animals could serve as a useful model for the study of surfactant phospholipid biosynthesis and its regulation, type II pneumocytes were isolated from adult streptozotocin-diabetic rats and placed in short-term primary culture. On a DNA basis, total cellular disaturated phosphatidylcholine (disaturated PC) and phosphatidylglycerol (PG) were decreased 36 and 66%, respectively, in type II cells from diabetic animals. 7 days of insulin treatment of diabetic rats returned the cellular disaturated PC and PG content to control values and increased the total cellular phosphatidylethanolamine (PE) content by 51%. The rates of glucose and acetate incorporation into disaturated PC per unit DNA were reduced 32 and 38%, respectively, in cells isolated from diabetic rats, while glycerol incorporation was increased by 143%. Insulin treatment of diabetic rats returned the glucose and glycerol incorporation rates to control values and increased acetate incorporation into disaturated PC by 66%. These data suggest that the biosynthesis of surfactant is altered by both diabetes mellitus and in vivo insulin treatment.  相似文献   

5.
Sex differences in amniotic fluid and lung lavage surfactant have been found. Although these studies suggest that augmented fetal surfactant synthesis occurs earlier in the female fetus, there is little direct evidence for a sex difference in fetal surfactant synthesis. We studied the synthesis of surfactant by evaluating the appearance of labelled phospholipids in lamellar bodies recovered from sex-specific organ culture of fetal rabbit lungs. Furthermore, we studied the ability of dexamethasone to stimulate surfactant synthesis in male and female fetal lungs. Organ culture was begun on day 21 of gestation. After 5 days the incorporation of [1,3-14C]glycerol into phosphatidylcholine (PC), disaturated phosphatidylcholine, phosphatidylinositol (PI), and phosphatidylglycerol was studied. Female lungs in organ culture synthesized more disaturated PC per milligram protein than male lungs. In the presence of dexamethasone (10(-8) M) and dihydrotestosterone (10(-8) M) an increased synthesis was noted in the female cultures of PC (270%), disaturated PC (234%), PI (281%), and phosphatidylglycerol (754%). No significant increase in the synthesis of PC or disaturated PC was observed in the male cultures. However in the male cultures smaller increases in the synthesis of PI (193%) and of phosphatidylglycerol (360%) were observed. Overall, dexamethasone stimulated synthesis in females but not in males such that significant differences in the synthesis of all phospholipids were found in the presence of 10(-8) M dexamethasone. These studies show that the synthesis of surfactant in the fetal lung is sexually dimorphic, as is the ability of dexamethasone to regulate synthesis. An understanding of the mechanism which causes these differences may provide important insight into the control of the developmental clock which regulates the orderly progression of development.  相似文献   

6.
Exposure of fetal type II pneumocytes to phospholipase A2 inhibitors led to significantly reduced choline uptake and decreased synthesis of total and disaturated phosphatidylcholines from both [methyl-14C]choline and [9,10(n)-3H]palmitate precursors. The percentage of the total synthesized phosphatidylcholine recovered as disaturated phosphatidylcholine was increased when compared to that in control cultures, suggesting that unsaturated phosphatidylcholine synthesis was reduced to a greater extent than that of the disaturated species. Synthesis of sphingomyelin and phosphatidylethanolamine from labeled palmitate was also reduced, whereas that of phosphatidylinositol and phosphatidylglycerol was significantly increased. Addition of phospholipase C resulted in increased synthesis of phosphatidylcholine from both labeled precursors; no significant changes were found in synthesis of most of the other 3H-labeled lipids. Added phospholipase A2 did not lead to any changes in either choline or palmitate incorporation. However, when melittin (a phospholipase A2 activator) was added to the cultures, greater incorporation of both palmitate and choline was observed, along with a significant increase in the percentage of total cellular radioactivity in 14C-labeled lipids, indicating also stimulation of phosphatidylcholine synthesis. A marked increase in CTP: phosphorylcholine cytidylyltransferase activity was found after treatment of the cultures with phospholipase C. Exposure to quinacrine also increased the activity of this enzyme. Addition of phospholipase C and melittin to prelabeled pneumocyte cultures accelerated degradation of cell phospholipids and the release of free fatty acids as the main degradation products. These findings suggest that intracellular phospholipases are regulators of synthesis of surfactant phospholipids in fetal type II pneumocytes, and that activation or inhibition of these phospholipases could represent a mechanism through which hormones and pharmacological agents modify surfactant and other phospholipid synthesis.  相似文献   

7.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

8.
Organotypic cultures of fetal type II epithelial cells were incubated in media containing insulin at concentrations ranging from 10 to 400 microunits/ml. Exposure to insulin resulted in increased glucose uptake from the media and in the rate of glucose conversion to CO2. Furthermore, both glucose uptake and CO2 production were dependent on the glucose concentration in the media. Surfactant and residual phosphatidylcholine fractions were isolated from the organotypic cultures by sucrose density centrifugation. The presence of low doses of insulin (10-25 microunits/ml) caused a significant increase in the incorporation of glucose into both surfactant and residual phosphatidylcholine. Insulin at levels of 100 microunits/ml or higher resulted in a significant decrease in glucose incorporation into both phosphatidylcholine fractions. Increasing the media glucose concentration from 5.6 to 20 mM caused a 2- to 2.5-fold increase in glucose utilization for surfactant and residual phospholipid synthesis, but did not produce any significant changes in choline incorporation into either surfactant or residual phosphatidylcholine. The addition of 400 microunits/ml of insulin to media containing 20 mM glucose, however, resulted in a 20% decrease in choline incorporation into surfactant phosphatidylcholine but had no effect on choline incorporation into residual phosphatidylcholine. These results suggest that insulin is an important hormone regulating fetal lung maturation and that hyperinsulinemia may be responsible for the delayed lung development in infants of diabetic mothers.  相似文献   

9.
Glucose, a major metabolic substrate for the mammalian fetus, probably makes significant contributions to surface active phospholipid synthesis in adult lung. We examined the developmental patterns of glycogen content, glycogen synthase activity, glycogen phosphorylase activity and glucose oxidation in fetal and newborn rat lung. These patterns were correlated with the development of phosphatidylcholine synthesis, content and the activities of enzymes involved in phosphatidylcholine synthesis. Fetal lung glycogen concentration increased until day 20 of gestation (term is 22 days) after which it declined to low levels. Activity of both glycogen synthase I and total glycogen synthase (I + D) in fetal lung increased late in gestation. Increased lung glycogen concentration preceded changes in enzyme activity. Glycogen phosphorylase a and total glycogen phosphorylase (a + b) activity in fetal lung increased during the period of prenatal glycogen depletion. The activity of the pentose phosphate pathway, as measured by the ratio of CO2 derived from oxidation of C1 and C6 of glucose, declined after birth. Fetal lung total phospholipid, phosphatidycholine and disaturated phosphatidylcholine content increased by 60, 90 and 180%, respectively, between day 19 of gestation and the first postnatal day. Incorporation of choline into phosphatidylcholine and disaturated phosphatidylcholine increased 10-fold during this time. No changes in phosphatidylcholine enzyme activities were noted during gestation, but both choline phosphate cytidylyltransferase and phosphatidate phosphatase activity increased after birth. The possible contributions of carbohydrate derived from fetal lung glycogen to phospholipid synthesis are discussed.  相似文献   

10.
Coordination of growth and differentiation in the fetal lung   总被引:2,自引:0,他引:2  
The male fetal lung begins to synthesize surfactant later in gestation than the female. This delay appears to be caused by androgens. We hypothesized that male fetal lung differentiation is delayed as a consequence of an extended phase of growth which is elicited by androgens. We observed that in vivo fetal lung protein synthesis relative to DNA synthesis peaked earlier in gestation in the female fetal lung and that this event was synchronous with the onset of differentiation. Pregnant rats were treated with dihydrotestosterone (DHT) during pregnancy, and fetal lung growth parameters were measured. Lung wet weight, dry weight, and DNA and protein concentrations were significantly elevated by DHT treatment. Type II cells and fibroblasts were isolated from lungs of DHT-treated fetuses. The number of total cells recovered was increased by 30%; the number of type II cells recovered was increased by 87%; and the number of fibroblasts recovered was increased by 42%. The type II cells which were recovered exhibited increased incorporation of [3H]thymidine into DNA and a reduced ratio of radiolabeled protein to radiolabeled DNA compared to that of cells from control lungs. Further studies were done in vitro with fibroblasts and type II cells isolated from untreated fetal rat lungs. Treatment of the fibroblasts with DHT during culture caused an increase in thymidine incorporation into DNA. This effect was not blocked by simultaneous treatment with cortisol, which normally causes reduced DNA synthesis and induces fibroblast differentiation. Treatment of the type II cells with DHT in culture caused a dose-dependent increase in cell number but a decrease in synthesis of disaturated phosphatidylcholine. These studies provide more direct evidence of the interrelationships between the control of growth and the control of differentiation in the fetal lung. DHT, a signal which delays the onset of expression of differentiation, also induces growth. We conclude that the controls of growth and of differentiation of the fetal lung are reciprocally linked.  相似文献   

11.
Lung surfactant disaturated phosphatidylcholine (PC) is highly dependent on the supply of palmitate as a source of fatty acid. The purpose of this study was to investigate the importance of de novo fatty acid synthesis in the regulation of disaturated PC production during late prenatal lung development. Choline incorporation into disaturated PC and the rate of de novo fatty acid synthesis was determined by the relative incorporation of [14C]choline and 3H2O, respectively, in 20-day-old fetal rat lung explants and in 18-day-old explants which were cultured 2 days. Addition of exogenous palmitate (0.15 mM) increased (26%) choline incorporation into disaturated PC but did not inhibit de novo fatty acid synthesis, as classically seen in other lipogenic tissue. Even in the presence of exogenous palmitate, de novo synthesis accounted for 87% of the acyl groups for disaturated PC. Inhibition of fatty acid synthesis by agaric acid or levo-hydroxycitrate decreased the rate of choline incorporation into disaturated PC. When explants were subjected to both exogenous palmitate and 60% inhibition of de novo synthesis, disaturated PC synthesis was below control values and 75% of disaturated PC acyl moieties were still provided by de novo synthesis. These data show that surfactant disaturated PC synthesis is highly dependent on the supply of palmitate from de novo fatty acid synthesis.  相似文献   

12.
We examined the effect of monolayer culture on surfactant phospholipids and proteins of type II cells isolated from human adult and fetal lung. Type II cells were prepared from cultured explants of fetal lung (16-24 weeks gestation) and from adult surgical specimens. Cells were maintained for up to 6 days on plastic tissue culture dishes. Although incorporation of [methyl-3H]choline into phosphatidylcholine (PC) by fetal cells was similar on day 1 and day 5 of culture, saturation of PC fell from 35 to 26%. In addition, there was decreased distribution of labeled acetate into PC, whereas distribution into other phospholipids increased or did not change. The decrease in saturation of newly synthesized PC was not altered by triiodothyronine (T3) and dexamethasone treatment or by culture as mixed type II cell/fibroblast monolayers. The content of surfactant protein SP-A (28-36 kDa) in fetal cells, as measured by ELISA and immunofluorescence microscopy, rose during the first day and then fell to undetectable levels by the fifth. Synthesis of SP-A, as measured by [35S]methionine labeling and immunoprecipitation, was detectable on day 1 but not thereafter. Levels of mRNAs for SP-A and for the two lipophilic surfactant proteins SP-B (18 kDa) and SP-C (5 kDa) fell with half-times of maximally 24 h. In contrast, total protein synthesis measured by [35S]methionine incorporation increased and then plateaued. In adult cells, the content of SP-A and its mRNA decreased during culture, with time-courses similar to those for fetal cells. We conclude that in monolayer culture on plastic culture dishes, human type II cells lose their ability to synthesize both phospholipids and proteins of surfactant. The control of type II cell differentiation under these conditions appears to be at a pretranslational level.  相似文献   

13.
Fetal rat lung was placed in organ culture at 15 days gestation (22 days total gestation period), before biochemical and morphological development of the pulmonary surfactant system. At the fifth day of culture numerous Type II cells containing lamellar bodies were present as determined by electron micrography. Phospholipid accumulation in the cultures increased abruptly beginning at 6 days in culture. The phospholipid which accumulated between the sixth and twelfth culture days was composed of 21--27% disaturated phosphatidylcholines. Both the percent of disaturated phosphatidylcholines in the phospholipid fraction and the qualitative pattern of accumulation as a function of time were similar to observations for fetal rat lung developing in vivo. The data presented provide evidence for development of the pulmonary surfactant system in organ culture in vitro.  相似文献   

14.
Human fetal lung (14-18 weeks gestation) was maintained in either organ or organotypic culture. By 4 days in organ culture or 14 days in organotypic culture, epithelial cells within both culture systems exhibited well-developed apical microvilli and possessed numerous intracellular lamellar bodies characteristic of surfactant phospholipid stores. However, analysis of the pattern of synthesis of individual molecular species of phosphatidylcholine by [14C]choline incorporation and reversed-phase h.p.l.c. showed that this apparent maturation was not paralleled by an increased synthesis of the dipalmitoyl species in either culture system. By contrast, the fractional synthesis of dipalmitoyl phosphatidylcholine, expressed as a percentage of total [14C]choline incorporation, decreased with time in both organ and organotypic culture. Moreover, these fractions were not significantly different from those measured in parallel monolayer cultures of mixed human fetal lung cells that displayed mainly fibroblast morphology. These results suggest that the synthesis pattern of phosphatidylcholine species by lung cells in culture is determined principally by their incubation conditions and not by their state of apparent maturation.  相似文献   

15.
Type II alveolar epithelial cells were isolated from fetal rat lung by differential adherence in monolayer culture. The preparation had a high degree of purity, as assessed by phase contrast microscopy and immunocytochemistry. Purity, based on reactivity with specific anti-adult lung serum (SAALS), which recognizes only type II cells, was 91% for cells isolated from 19-day fetal lungs and 79% for cells isolated from 21-day fetal lungs. The lower purity of type II cells in cultures derived from 1-day postnatal rat lungs (51% cells reactive with SAALS) is probably due to a lower tendency of the type II cells from neonatal rats to adhere to culture dishes than of type II cells from fetal rats. Type II cells isolated from 21-day fetal lungs contained a higher percentage phosphatidylglycerol and incorporated [Me-3H]choline faster into phosphatidylcholine (PC) than type II cells isolated from 19-day fetal lungs. Moreover, in cell preparations derived from lungs at fetal day 21, a higher percentage of epithelial cells contained lamellar bodies than in preparations derived from lungs at fetal day 19. The observation of these differences in the stage of maturation indicates that these differences, which are typical features of the original material, are not obliterated by differentiation during the culture. Type II cells isolated according to the present procedure were capable of synthesizing PC with a high percentage of the disaturated species. This method for the isolation of fetal type II cells may be a useful tool in studies concerning surfactant synthesis and its regulation in the fetal lung.  相似文献   

16.
Culture of fetal alveolar epithelial type II cells in serum-free medium   总被引:1,自引:0,他引:1  
Summary A serum-free culture medium (defined medium = DM) was elaborated by adding to Eagle’s minimum essential medium (MEM), non-essential amino acids, transferrin, putrescine, tripeptide glycyl-histidyl-lysine, somatostatin, sodium selenite, ethanolamine, phosphoethanolamine, sodium pyruvate, and metal trace elements. This medium was tested for its ability to support sustained surfactant biosynthesis in fetal alveolar epithelial type II cells. For up to 8 days, ultrastructure was maintained with persistance of lamellar inclusion bodies. Thymidine incorporation into DNA was enhanced about 50% in DM as compared with MEM, whereas it was enhanced 300% in 10% fetal bovine serum. With DM, the incorporation of tritiated choline into phosphatidylcholine (PC) of isolated surfactant material was about twice that with MEM. Deletion experiments evidenced the prominent role of pyruvate, transferrin, and selenium in the stimulation of surfactant PC biosynthesis. The addition of biotin to DM enhanced surfactant PC biosynthesis slightly and nonsurfactant PC biosynthesis markedly. The presence of nucleosides seemed unfavorable to the synthesis of surfactant PC. Type II cells responded to the addition of epidermal growth factor and insulinlike growth factor-I both by increased thymidine incorporation into DNA and choline incorporation into PC. It is concluded that DM represents a useful tool for cultivating type II cells without loss of their specialized properties and for studying the regulation of cell proliferation and surfactant biosynthesis in a controlled environment.  相似文献   

17.
Summary We found that fetal bovine serum supplementation of culture medium provided limited quantities of linoleic acid, an essential fatty acid, to cells grown in culture (2.8 ± 0.3% of total fatty acids in 12 lots). Supplementation of the medium with additional linoleic acid resulted in altered phospholipid acyl composition in cells of two established lines, A549, a putative model of the pulmonary Type II epithelial cell, and SIRC, a line derived from rabbit corneal epithelium. In particular, linoleic acid supplementation induced a relative increase in disaturated choline phosphoglycerides of 33 and 36%, respectively, in cells of the two lines. This observation may be relevant to design of media for primary culture of Type II cells, in which disaturated phospholipid synthesis is used as an index of differentiated function (surfactant production). Linoleate supplementation did not alter growth or size (protein content) of cells of either line and caused a slight increase in accumulation of neutral lipid, in the form of cytoplasmic droplets, in A549 cells. Supplementation of cell cultures with equivalent concentrations of the nonessential fatty acids palmitic and oleic acid did not significantly alter the growth, morphologic appearance, or lipid composition of the cells. However, it was demonstrated in cells of one line that palmitic acid supplementation temporarily stimulated synthesis of disaturated choline phosphoglyceride from radiolabeled choline. This work was supported by Grants HL-24817 and HL-21251 from the National Institutes of Health, USPHS, and by a grant from the Alexandrine and Alexander L. Sinsheimer Fund.  相似文献   

18.
19.
Glycerol utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozocinin-diabetic rats. With glucose in the incubation medium, incorporation of exogenous [1,3-14C]glycerol into disaturated phosphatidylcholine, total phosphatidylcholine (PC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) was increased 4-fold in cells from diabetic rats. In the absence of glucose, glycerol incorporation was 5-fold greater than in its presence in cells from normal animals, but was further increased 2.2-fold in cells from diabetic rats. Insulin treatment of diabetic rats returned all incorporation rates to control values. The increased glycerol incorporation rates were not due to differences in either phospholipid turnover or the size of the glycerol 3-phosphate precursor pool. Kinetic analysis of glycerol entry into the acid-soluble cell fraction indicated that glycerol transport occurred largely by simple diffusion, and was not rate limiting for its entry into lipids. Glycerol entry into the total lipid fraction was saturable, reaching a Vmax of 48 pmol/micrograms DNA per h in normal cells and 120 pmol/micrograms DNA per h in cells from diabetic rats, with no change in the Km (0.31 mM). While glycerol oxidation was reduced 23% in cells from diabetic rats in the presence of glucose and by 44% in the absence of glucose, glycerol kinase activity in sonicates of cells from diabetic animals was increased 210% and was reversed by in vivo insulin treatment. These results suggest that glycerol utilization in type II pneumocytes is a hormonally regulated function of both glycerol oxidation and glycerol phosphorylation.  相似文献   

20.
1. A549 is a continuous cell line derived from a human pulmonary adenocarcinoma. To evaluate the suitability of this cell line as a model of the type II pneumocyte, the morphology and the composition and biosynthesis of phosphatidylcholine was examined under control culture conditions and during fatty acid supplementation with palmitate. A number of the ultrastructural characteristics of A549 cells were similar to the in situ type II pneumocyte and were unchanged by fatty acid supplementation. The phospholipid composition of the cell line was similar to that of primary isolates of type II cells in total phosphatidylcholine, disaturated phosphatidylcholine, and palmitate and saturated fatty acid. Phospholipid biosynthetic results were also consistent with those reported for isolated type II cell models. These included: (i) the pattern of incorporation of choline, palmitate and acetate into phosphatidylcholines; (ii) the effect of palmitate supplementation, which resulted in stimulation of the rate of phosphatidylcholine biosynthesis and in increased percentage of labeled precursor in disaturated phosphatidylcholine; and (iii) the preferential synthesis from labeled choline and palmitate of a highly disaturated phosphatidylcholine in short-term incubations. 2. The incorporation of an organometallic palmitate analog, 12,12-dimethyl-12-stannahexadecanoate, into A549 cell lipids was examined and compared to that of palmitate. These date demonstrate for the first time the incorporation of an organometallic substrate into the phospholipids of a mammalian cell line. This analog substitutes selectively for the native fatty acid at a rate similar to that of the native fatty acid with no cytotoxic effects. The organotin probe, coupled with spectroscopic detection and electron microscopy, may be useful for examining ultrastructural aspects of phospholipid synthesis, translocation and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号