首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assay has been developed that permits analysis of repair of A/G mismatches to C.G base pairs in cell extracts of Salmonella typhimurium LT2. This A/G mismatch repair is independent of ATP, dam methylation, and mutS gene function. The gene product of mutB has been shown to be involved in the dam-independent pathway through the in vitro assay. Moreover, specific DNA-protein complexes and an endonuclease can be detected in S. typhimurium extracts by using DNA fragments containing an A/G mismatch. These activities are not observed with substrates which have a T/G mismatch or no mismatch. The S. typhimurium endonuclease, like the A/G endonuclease found in Escherichia coli (A-L. Lu and D.-Y. Chang, Cell 54:805-812, 1988), makes incisions at the first phosphodiester bond 3' to and the the second phosphodiester bond 5' to the dA of the A/G mismatch. No incision site was detected on the other DNA strand. Extracts prepared from mutB mutants cannot form A/G mismatch-specific DNA-protein complexes and do not contain the A/G endonuclease activity. Thus the A/G mismatch specific binding and nicking activities are probably involved in the A/G mismatch repair pathway. Preliminary analysis of the mutational spectrum of the mutB strain has indicated that this mutator allele causes an increase in C.G-to-A.T transversions without affecting the frequencies of other transversion or transition events. In addition, the mutB gene has been mapped to the 64-min region of the S. typhimurium chromosome. Together, this biochemical and genetic evidence suggests that the mutB gene product of S. typhimurium is the homolog of the E. coli micA (and/or mutY) gene product.  相似文献   

2.
The unusual behavior of the mutation ami36, which generates hyperrecombination in two point crosses, was previously attributed to a localized conversion process changing A/G mispairs into CG pairs. Although the mechanism was found to be dependent on the DNA polymerase I, the specific function responsible for this correction was still unknown. Analysis of the pneumococcal genome sequence has revealed the presence of an open reading frame homologous to the gene mutY of Escherichia coli. The gene mutY encodes an adenine glycosylase active on A/G and A/7,8-dihydro-8-oxoguanine (8-OxoG) mismatches, inducing their repair to CG and C/8-OxoG, respectively. Here we report that disrupting the pneumococcal mutY homologue abolishes the hyperrecombination induced by ami36 and leads to a mutator phenotype specifically enhancing AT-to-CG transversions. The deduced amino acid sequence of the pneumococcal MutY protein reveals the absence of four cysteines, highly conserved in the endonuclease III/MutY glycosylase family, which ligate a [4Fe-4S](2+) cluster. The actual function of this cluster is still intriguing, inasmuch as we show that the pneumococcal gene complements a mutY strain of E. coli.  相似文献   

3.
The Escherichia coli methylation-independent repair pathway specific for A/G mismatches has been shown to require the gene product of micA. Extracts prepared from micA mutants do not form an A/G mismatch-specific DNA-protein complex and do not contain an A/G mismatch-specific nicking activity. Moreover, a partially purified protein fraction containing both A/G mismatch-specific nicking and binding activities restores repair activity in micA mutant extracts. The DNA sequence of a 2.3-kb fragment containing the micA gene has been determined. There are two open reading frames (ORF) in this DNA fragment: one ORF encodes a 25.7-kDa protein whose function is still unknown, the other ORF codes for a protein with an Mr of 39,147, but this ORF can be transcribed and the mRNA can be translated to yield a protein with an apparent Mr of 36 kDa on a sodium dodecyl sulfate-polyacrylamide gel. Deletion analysis showed that this 39.1-kDa ORF is the micA gene as judged by the capacity of the encoded protein to restore the A/G mismatch-specific nicking activity of micA mutant extracts. Furthermore, our results suggest that micA is the same gene as the closely mapped mutY, which encodes the A/G mismatch-specific glycosylase.  相似文献   

4.
Spontaneous mutators of Salmonella typhimurium LT2 were generated by inserting the transposable element Tn5 or Tn10 into the bacterial chromosome. Two mutators mapped at the position of the mutH and mutL loci of S. typhimurium, and two other mutators mapped at positions corresponding to the mutS and uvrD loci of Escherichia coli. A fifth mutator, mutB, did not map at a position corresponding to any of the known mutators of S. typhimurium or E. coli. The mutH,L,S and uvrD alleles increased the frequency of both spontaneous base substitution and frameshift mutations, whereas the mutB allele increased the frequency only of spontaneous base substitution mutations. The increased frequency of base substitution mutations was recA+ independent in the mutH, mutL, and uvrD strains and partially recA+ independent in the mutS strain. The uvrD mutation decreased the resistance of the cells to killing by ultraviolet irradiation. The mutH,L,S and uvrD strains showed an increased sensitivity to mutagenesis by the alkylating agents methyl methane sulfonate and ethyl methane sulfonate, but not to mutagenesis by 4-nitroquinoline-1-oxide.  相似文献   

5.
In the current studies, we investigated base substitutions in the Bacillus subtilis mutT, mutM, and mutY DNA error-prevention system. In the wild type strain, spontaneous mutations were mainly transitions, either G:C --> A:T or A:T --> G:C. Although both transitions and transversions were observed in mutY and mutM mutants, mutM/mutY double mutants contain strictly G:C --> T:A transversions. In the mutT strain, A:T --> C:G transversion was not observed, and over-expression of the B. subtilis mutT gene had no effect on the mutation rate in the Escherichia coli mutT strain. Using 8-oxo-dGTP-induced mutagenesis, transitions especially A:T --> G:C were predominant in the wild type and mutY strains. In contrary, transversion was high on mutY and double mutant (mutM mutY). Finally, the opuBC and yitG genes were identified from the B. subtilis chromosome as mutator genes that prevented the transition base substitutions.  相似文献   

6.
The Haemophilus influenzae mutB+ gene complements Escherichia coli uvrD mutants. The E. coli uvrD+ gene complements H. influenzae mutB1 mutants.  相似文献   

7.
Li X  Lu AL 《Journal of bacteriology》2001,183(21):6151-6158
The mutY homolog gene (mutY(Dr)) from Deinococcus radiodurans encodes a 39.4-kDa protein consisting of 363 amino acids that displays 35% identity to the Escherichia coli MutY (MutY(Ec)) protein. Expressed MutY(Dr) is able to complement E. coli mutY mutants but not mutM mutants to reduce the mutation frequency. The glycosylase and binding activities of MutY(Dr) with an A/G-containing substrate are more sensitive to high salt and EDTA concentrations than the activities with an A/7,8-dihydro-8-oxoguanine (GO)-containing substrate are. Like the MutY(Ec) protein, purified recombinant MutY(Dr) expressed in E. coli has adenine glycosylase activity with A/G, A/C, and A/GO mismatches and weak guanine glycosylase activity with a G/GO mismatch. However, MutY(Dr) exhibits limited apurinic/apyrimidinic lyase activity and can form only weak covalent protein-DNA complexes in the presence of sodium borohydride. This may be due to an arginine residue that is present in MutY(Dr) at the position corresponding to the position of MutY(Ec) Lys142, which forms the Schiff base with DNA. The kinetic parameters of MutY(Dr) are similar to those of MutY(Ec). Although MutY(Dr) has similar substrate specificity and a binding preference for an A/GO mismatch over an A/G mismatch, as MutY(Ec) does, the binding affinities for both mismatches are slightly lower for MutY(Dr) than for MutY(Ec). Thus, MutY(Dr) can protect the cell from GO mutational effects caused by ionizing radiation and oxidative stress.  相似文献   

8.
Eutsey R  Wang G  Maier RJ 《DNA Repair》2007,6(1):19-26
MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325-fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo.  相似文献   

9.
Low rates of spontaneous G:C-->C:G transversions would be achieved not only by the correction of base mismatches during DNA replication but also by the prevention and removal of oxidative base damage in DNA. Escherichia coli must have several pathways to repair such mismatches and DNA modifications. In this study, we attempted to identify mutator loci leading to G:C-->C:G transversions in E.coli. The strain CC103 carrying a specific mutation in lacZ was mutagenized by random miniTn 10 insertion mutagenesis. In this strain, only the G:C-->C:G change can revert the glutamic acid at codon 461, which is essential for sufficient beta-galactosidase activity to allow growth on lactose. Mutator strains were detected as colonies with significantly increased rates of papillae formation on glucose minimal plates containing P-Gal and X-Gal. We screened approximately 40 000 colonies and selected several mutator strains. The strain GC39 showed the highest mutation rate to Lac+. The gene responsible for the mutator phenotypes, mut39 , was mapped at around 67 min on the E.coli chromosome. The sequencing of the miniTn 10 -flanking DNA region revealed that the mut39 was identical to the mutY gene of E.coli. The plasmid carrying the mutY + gene reduced spontaneous G:C-->T:A and G:C-->C:G mutations in both mutY and mut39 strains. Purified MutY protein bound to the oligonucleotides containing 7,8-dihydro-8-oxo-guanine (8-oxoG):G and 8-oxoG:A. Furthermore, we found that the MutY protein had a DNA glycosylase activity which removes unmodified guanine from the 8-oxoG:G mispair. These results demonstrate that the MutY protein prevents the generation of G:C-->C:G transversions by removing guanine from the 8-oxoG:G mispair in E.coli.  相似文献   

10.
ABSTRACT: BACKGROUND: The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. RESULTS: In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G->T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. CONCLUSION: The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12-16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair.  相似文献   

11.
We have generated mutator strains of Bacillus anthracis Sterne by using directed gene knockouts to investigate the effect of deleting genes involved in mismatch repair, oxidative repair, and maintaining triphosphate pools. The single-knockout strains are deleted for mutS, mutY, mutM, or ndk. We also made double-knockout strains that are mutS ndk or mutY mutM. We have measured the levels of mutations in the rpoB gene that lead to the Rif(r) phenotype and have examined the mutational specificity. In addition, we examined the mutational specificity of two mutagens, 5-azacytidine and N-methyl-N'-nitro-N-nitroso-guanidine. The mutY and mutM single knockouts are weak mutators by themselves, but the combination of mutY mutM results in very high mutation rates, all due to G:C --> T:A transversions. The situation parallels that seen in Escherichia coli. Also, mutS knockouts are strong mutators and even stronger in the presence of a deletion of ndk. The number of sites in rpoB that can result in the Rif(r) phenotype by single-base substitution is more limited than in certain other bacteria, such as E. coli and Deinococcus radiodurans, although the average mutation rate per mutational site is roughly comparable. Hotspots at sites with virtually identical surrounding sequences are organism specific.  相似文献   

12.
The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity.  相似文献   

13.
14.
One of the most predominating oxidative DNA damages, both spontaneously formed and after gamma-radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This 8oxoG is a mutagenic lesion because it can mispair with adenine instead of the correct cytosine leading to G:C to T:A transversions. In Escherichia coli (E. Coli) base excision repair (BER) is one of the most important repair systems for the repair of 8oxoG and other oxidative DNA damage. An important part of BER in E. coli is the so-called GO system which consists of three repair enzymes, MutM (Fpg), MutY and MutT which are all involved in repair of 8oxoG or 8oxoG mispairs. The aim of this study is to determine the effect of combined Fpg- and MutY-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum of the lacZalpha gene. For that purpose, non-irradiated or gamma-irradiated double-stranded (ds) M13mp10 DNA, with the lacZalpha gene inserted as mutational target sequence was transfected into an E. coli strain which is deficient in both Fpg and MutY (BH1040). The resulting mutation spectra were compared with the mutation spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105) which were determined in an earlier study. The results of the present study indicate that combined Fpg- and MutY-deficiency induces a large increase in G:C to T:A transversions in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)) as compared to the fpg(-) and the wild type strain. Besides the increased levels of G:C to T:A transversions, there is also an increase in G:C to C:G transversions and frameshift mutations in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)).  相似文献   

15.
Glutamic acid is synthesized in enteric bacteria by either glutamate dehydrogenase or by the coupled activities of glutamate synthase and glutamine synthetase. A hybrid plasmid containing a fragment of the Salmonella typhimurium chromosome cloned into pBR328 restores growth of glutamate auxotrophs of S. typhimurium and Escherichia coli strains which have mutations in the genes for glutamate dehydrogenase and glutamate synthase. A 2.2-kilobase pair region was shown by complementation analysis, enzyme activity measurements, and the maxicell protein synthesizing system to carry the entire glutamate dehydrogenase structural gene, gdhA. Glutamate dehydrogenase encoded by gdhA carried on recombinant plasmids was elevated 5- to over 100-fold in S. typhimurium or E. coli cells and was regulated in both organisms. The gdhA promoter was located by recombination studies and by the in vitro fusion to, and activation of, a promoter-deficient galK gene. Additionally, S. typhimurium gdhA DNA was shown to hybridize to single restriction fragments of chromosomes from other enteric bacteria and from Saccharomyces cerevisiae.  相似文献   

16.
17.
A gene coding for D-alanine:D-alanine (D-Ala-D-Ala) ligase (ADP forming) (EC 6.3.2.4) activity has been isolated from a lambda library of Salmonella typhimurium DNA. Insertion mutations in the gene indicate that the gene is not essential for growth of the bacterium. The encoded enzyme was purified from an overproducing strain of S. typhimurium. D-Ala-D-Ala ligase is a protein of 39,271 molecular weight and has a kcat of 644 min-1 at pH 7.2. A 2.4-kilobase SalI-SphI fragment containing the gene was sequenced, and the ddlA gene consists of 1092 nucleotides. The gene sequence was compared to the sequence of the ddl gene of Escherichia coli [Robinson, A. C., Kenan, D. J., Sweeney, J., & Donachie, W. D. (1986) J. Bacteriol. 167, 809-817]. Because of differences between the S. typhimurium gene and the E. coli ddl gene, the S. typhimurium gene has been named ddlA.  相似文献   

18.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19), encoded by the aroA locus, is a target site of glyphosate inhibition in bacteria. A glyphosate-resistant aroA allele has been cloned in Escherichia coli from a mutagenized strain of Salmonella typhimurium. Subcloning of this mutant aroA allele shows the gene to reside on a 1.3-kilobase segment of S. typhimurium DNA. Nucleotide sequence analysis of this mutant gene indicates a protein-coding region 427 amino acids in length. Comparison of the mutant and wild type aroA gene sequences reveals a single base pair change resulting in a Pro to Ser amino acid substitution at the 101st codon of the protein. A hybrid gene fusion between mutant and wild type aroA gene sequences was constructed. 5-Enolpyruvylshikimate-3-phosphate synthase was prepared from E. coli cells harboring this construct. The glyphosate-resistant phenotype is shown to be associated with the single amino acid substitution described above.  相似文献   

19.
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.  相似文献   

20.
We have investigated in detail the interactions between the Escherichia coli mutT, mutM, and mutY error-prevention systems. Jointly, these systems protect the cell against the effects of the oxidative stress product, 8-oxoguanine (8-oxoG), a base analog with ambiguous base-pairing properties, pairing with either A or C during DNA synthesis. mutT mutator strains display a specific increase in A.T-->C.G transversions, while mutM and mutY mutator strains show specific G.C-->T.A increases. To study in more detail the in vivo processing of the various mutational intermediates leading to A.T-->C.G and G.C-->T.A transversions, we analyzed defined A.T-->C.G and G.C-->T.A events in strains containing all possible combinations of these mutator alleles. We report three major findings. First, we do not find evidence that the mutT allele significantly increases G.C-->T.A transversions in either mut(+), mutM, mutY or mutMmutY backgrounds. We interpret this result to indicate that incorporation of 8-oxodGTP opposite template C may not be frequent relative to incorporation opposite template A. Second, we show that mutT-induced A.T-->C.G transversions are significantly reduced in strains carrying mutY and mutMmutY deficiencies suggesting that 8-oxoG, when present in DNA, preferentially mispairs with dATP. Third, the mutY and mutMmutY deficiencies also decrease A.T-->C.G transversions in the mutT(+) background, suggesting that, even in the presence of functional MutT protein, A.T-->C.G transversions may still result from 8-oxodGTP misincorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号