首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paired Ig-like type 2 receptor (PILR), which comprises both inhibitory and activating isoforms, is well conserved among most mammalians. The inhibitory PILRalpha possesses an ITIM in its cytoplasmic domain, whereas the activating PILRbeta does not have an ITIM but transduces activating signals by associating with the ITAM-bearing DAP12 adapter molecule. Both mouse PILRalpha and PILRbeta recognize mouse CD99, which is broadly expressed on various cells, including lymphocytes, and is involved in the regulation of immune responses. We herein report that sialylated O-linked sugar chains on CD99 are essential for the recognition by PILR. Mutations of one of two O-glycosylation sites on CD99 significantly reduced recognition of CD99 by the activating PILRbeta, whereas recognition by the inhibitory PILRalpha was not affected. In contrast, mutations of both O-glycosylation sites on CD99 completely abrogated the recognition by both PILRalpha and PILRbeta. PILR did not recognize CD99 treated with neuraminidase, and CD99 expressed on cells transfected with core 2 beta-1,6-N-acetylglucosaminyltransferase was not recognized by PILR. NK cells expressing endogenous activating PILRbeta receptors mediated cytotoxicity against cells expressing wild-type CD99 but not cells expressing mutant CD99 that lacked O-glycosylation sites. These findings indicate that sialylated O-linked sugar structures on CD99 play an important role in the recognition of PILR.  相似文献   

2.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

3.
SHP-1-mediated dephosphorylation of protein tyrosine residues is central to the regulation of several cell signaling pathways, the specificity of which is dictated by the intrinsic affinity of SH2 domains for the flanking sequences of phosphotyrosine residues. By using a modified yeast two-hybrid system and SHP-1 as bait, we have cloned a human cDNA, PILRalpha, encoding a 303-amino acid immunoglobulin-like transmembrane receptor bearing two cytoplasmic tyrosines positioned within an immunoreceptor tyrosine-based inhibitory motif. Substrate trapping in combination with pervanadate treatment of 293T cells confirms that PILRalpha associates with SHP-1 in vivo upon tyrosine phosphorylation. Mutation of the tyrosine residues in PILRalpha indicates the pivotal role of the Tyr-269 residue in recruiting SHP-1. Surface plasmon resonance analysis further suggests that the association between PILRalpha-Tyr-269 and SHP-1 is mediated primarily via the amino-terminal SH2 domain of the latter. Polymerase chain reaction amplification of cDNA in combination with genomic sequence analysis revealed a second gene, PILRbeta, coding for a putative activating receptor as suggested by a truncated cytoplasmic tail and a charged lysine residue in its transmembrane region. The PILRalpha and PILRbeta genes are localized to chromosome 7 which is in contrast with the mapping of known members of the inhibitory receptor superfamily.  相似文献   

4.
5.
P-selectin glycoprotein ligand-1 (PSGL-1) is a mucin on leukocytes that binds to selectins. P-selectin binds to an N-terminal region of PSGL-1 that requires sulfation of at least one of three clustered tyrosines (TyrSO(3)) and an adjacent core-2-based O-glycan expressing sialyl Lewis x (C2-O-sLe(x)). We synthesized glycosulfopeptides (GSPs) modeled after this region of PSGL-1 to explore the roles of individual TyrSO(3) residues, the placement of C2-O-sLe(x) relative to TyrSO(3), the relative contributions of fucose and sialic acid on C2-O-sLe(x), and the function of the peptide sequence for binding to P-selectin. Binding of GSPs to P-selectin was measured by affinity chromatography and equilibrium gel filtration. 2-GSP-6, which has C2-O-sLe(x) at Thr-57 and TyrSO(3) at residues 46, 48, and 51, bound to P-selectin with high affinity (K(d) approximately 650 nm), whereas an isomeric trisulfated GSP containing C2-O-sLe(x) at Thr-44 bound much less well. Non-sulfated glycopeptide (2-GP-6) containing C2-O-sLe(x) at Thr-57 bound to P-selectin with approximately 40-fold lower affinity (K(d) approximately 25 microm). Proteolysis of 2-GP-6 abolished detectable binding of the residual C2-O-sLe(x)-Thr to P-selectin, demonstrating that the peptide backbone contributes to binding. Monosulfated and disulfated GSPs bound significantly better than non-sulfated 2-GP-6, but sulfation of Tyr-48 enhanced affinity (K(d) approximately 6 microm) more than sulfation of Tyr-46 or Tyr-51. 2-GSP-6 lacking sialic acid bound to P-selectin at approximately 10% that of the level of the parent 2-GSP-6, whereas 2-GSP-6 lacking fucose did not detectably bind; thus, fucose contributes more than sialic acid to binding. Reducing NaCl from 150 to 50 mm markedly enhanced binding of 2-GSP-6 to P-selectin (K(d) approximately 75 nm), demonstrating the charge dependence of the interaction. These results reveal a stereospecific interaction of P-selectin with PSGL-1 that includes distinct contributions of each of the three TyrSO(3) residues, adjacent peptide determinants, and fucose/sialic acid on an optimally positioned core-2 O-glycan.  相似文献   

6.
The repetitive D1, D2, and D3 elements of Staphylococcus aureus fibronectin-binding protein FnBPA each bind the N-terminal 29-kDa fragment (N29) of fibronectin with low micromolar dissociation constants (Kd), but in tandem they compose a high affinity domain, D1-3. An additional seven Fn-binding segments have been predicted in FnBPA in a region N-terminal of the D-repeats (Schwarz-Linek, U., Werner, J. M., Pickford, A. R., Gurusiddappa, S., Kim, J. H., Pilka, E. S., Briggs, J. A., Gough, T. S., Hook, M., Campbell, I. D., and Potts, J. R. (2003) Nature 423, 177-181). We have evaluated the requirements for high affinity binding of N29 to the D-repeat domain and determined the affinity and stoichiometry of N29 binding to segments that are N-terminal of the D-repeats in the related FnBPB adhesin. We confirmed that D1-3 has two equivalent high affinity sites (Kd, approximately 1 nm) and provided evidence for one or more lower affinity sites (Kd, approximately 0.5 microm). Bimodular D1-2 and D2-3 exhibit intermediate affinity sites with respective Kd values of 0.25 and 0.044 microm, as well as a low affinity site with a Kd value of 2.2-2.5 microm. We also identified two binding domains that are N-terminal of the D-repeats, designated DuB and DuA. Segments internal to these domains individually bound N29 with similar Kd values of approximately 2 microm, whereas the DuBA polypeptide possessing both segments and other intervening sites bound four molecules of N29 with much higher affinity (Kd, approximately 10 nm). DuBAD, a larger polypeptide harboring all of the known or predicted binding motifs in FnBPB, bound seven to eight molecules of N29, with a Kd of approximately 7 nm. Because most of the isolated binding segments display low affinity for N29 and lack motifs for binding of one or both of the 1F1 and 5F1 modules in the N-terminal domain of Fn, we propose that high affinity is achieved in part as a consequence of self-interaction between bound molecules of N29.  相似文献   

7.
Curariform alkaloids competitively inhibit muscle acetylcholine receptors (AChR) by bridging the alpha and non-alpha subunits that form the ligand-binding site. Here we delineate bound orientations of d-tubocurarine (d-TC) and its methylated derivative metocurine using mutagenesis, ligand binding measurements, and computational methods. When tested against a series of lysine mutations in the epsilon subunit, the two antagonists show marked differences in the consequences of the mutations on binding affinity. The mutations epsilon L117K, epsilon Y111K, and epsilon L109K decrease affinity of metocurine by up to 3 orders of magnitude but only slightly alter affinity of d-TC. At the alpha subunit face of the binding site, the mutation alpha Y198T decreases affinity of both antagonists, but alpha Y198F preferentially enhances affinity of d-TC. Computation of antagonist docking orientations, based on our structural model of the alpha-epsilon site of the human AChR, indicates distinct orientations of each antagonist; the flatter metocurine fits into a pocket formed principally by the epsilon subunit, whereas the more compact d-TC spans the narrower crevasse between alpha and epsilon subunits. The side chains of epsilon Tyr-111 and epsilon Thr-117 juxtapose one of two quaternary nitrogens in metocurine but are remote from the equivalent quaternary nitrogen in d-TC, which instead closely approaches alpha Tyr-198. The different docked orientations arise through tilt of the curariform scaffold by approximately 60 degrees normal to the nitrogen-nitrogen axis, together with a 20 degrees rotation about the axis. The overall mutagenesis and computational results show that despite their similar structures, d-TC and metocurine bind in distinctly different orientations to the adult human AChR.  相似文献   

8.
Mutations in the tryptophan-binding site of the trp repressor have been generated using site-directed mutagenesis. The selection of sites for alteration was based on the three-dimensional x-ray crystallographic structure (Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, C. L., and Sigler, P. B. (1985) Nature 317, 782-786). The changes generated include Thr-44 to Ala (T44A), Arg-54 to Leu (R54L), Arg-54 to Lys (R54K), Arg-84 to Leu (R84L), and Arg-84 to Lys (R84K). The mutant proteins were purified and characterized in detail for their binding properties. Both tryptophan and operator DNA affinities for all five mutants were decreased. The R84L, R54K, and R54L mutants exhibited increases in Kd for operator DNA relative to wild-type repressor ranging from approximately 10(3) to approximately 10(4), while R84K and T44A exhibited increases of 10- to 100-fold. This diminution in DNA binding activity derives at least in part from diminished affinity for tryptophan, although decreased affinity for nonspecific DNA was also observed for these mutant proteins. Tryptophan binding was not detectable by equilibrium dialysis for most of the mutant proteins, but this activity was measurable for several of the altered proteins by monitoring the fluorescence decrease associated with the displacement of 1-anilino-8-naphthalenesulfonate from the tryptophan-binding site (Chou, W.-Y., and Matthews, K. S. (1989) J. Biol. Chem. 264, 18314-18319). These measurements revealed that tryptophan bound to R84K, T44A, and R84L repressors with Kd values 1.5- to 13-fold higher than that for wild-type repressor. It was not possible to detect tryptophan binding to R54K and R54L even using the fluorescence assay. Circular dichroism spectra demonstrated that the mutants and the wild-type repressor possess similar secondary structural features. The results of this selected substitution in the tryptophan-binding site are readily interpreted based on the x-ray structural analysis.  相似文献   

9.
To examine the effect of CTP, GTP, ITP, and UTP on calcium binding of Ca2+-ATPase molecules of the sarcoplasmic reticulum, the calcium dependence of the Ca2+-activated hydrolysis activities of these NTPs of the enzyme molecules was examined by comparison with that of calcium binding of the molecules in the absence of the NTPs at pH 7.40. In the sarcoplasmic reticulum membrane, CTP, GTP, and ITP did not affect the noncooperative (Hill value (n(H)) of approximately 1, apparent calcium affinity (K(0.5)) of 2-6 microm)) and cooperative (n(H) approximately 2, K(0.5) approximately 0.2 microm) calcium binding of the molecules, whereas UTP caused the molecules to highly cooperatively (n(H) approximately 4) bind calcium ions with a lowered K(0.5) of approximately 0.04 microm. When the enzyme molecules were solubilized with detergent, all of these NTPs reversibly degraded the calcium affinity of the molecule (from K(0.5) = 3-5 to >40 microm), although the effect of the NTPs on the negatively cooperative manner (n(H) approximately 0.5) of calcium binding was not experimentally obtained. Taking into account the first part of this study (Nakamura, J., Tajima, G., Sato, C., Furukohri, T., and Konishi, K. (2002) J. Biol. Chem. 277, 24180-24190) showing the improving effect of ATP on calcium binding of the membranous and solubilized molecules, the results show that ATP is the only intrinsic substrate for the enzyme molecule. This NTP regulation is discussed in terms of the oligomeric structure of the molecules.  相似文献   

10.
beta Lys-155 in the glycine-rich sequence of the beta subunit of Escherichia coli F1-ATPase has been shown to be near the gamma-phosphate moiety of ATP by affinity labeling (Ida, K., Noumi, T., Maeda, M., Fukui, T., and Futai, M. (1991) J. Biol. Chem. 266, 5424-5429). For examination of the roles of beta Lys-155 and beta Thr-156, mutants (beta Lys-155-->Ala, Ser, or Thr; beta Thr-156-->Ala, Cys, Asp, or Ser; beta Lys-155/beta Thr-156-->beta Thr-155/beta Lys-156; and beta Thr-156/beta Val-157-->beta Ala-156/beta Thr-157) were constructed, and their properties were studied extensively. The beta Ser-156 mutant was active in ATP synthesis and had approximately 1.5-fold higher membrane ATPase activity than the wild type. Other mutants were defective in ATP synthesis, had < 0.1% of the membrane ATPase activity of the wild type, and showed no ATP-dependent formation of an electrochemical proton gradient. The mutants had essentially the same amounts of F1 in their membranes as the wild type. Purified mutant enzymes (beta Ala-155, beta Ser-155, beta Ala-156, and beta Cys-156) showed low rates of multisite (< 0.02% of the wild type) and unisite (< 1.5% of the wild type) catalyses. The k1 values of the mutant enzymes for unisite catalysis were lower than that of the wild type: not detectable with the beta Ala-156 and beta Cys-156 enzymes and 10(2)-fold lower with the beta Ala-155 and beta Ser-155 enzymes. The beta Thr-156-->Ala or Cys enzyme showed an altered response to Mg2+, suggesting that beta Thr-156 may be closely related to Mg2+ binding. These results suggest that beta Lys-155 and beta Thr-156 are essential for catalysis and are possibly located in the catalytic site, although beta Thr-156 could be replaced by a serine residue.  相似文献   

11.
The amino acid in position 49 in bovine adrenodoxin is conserved among vertebrate [2Fe-2S] ferredoxins as hydroxyl function. A corresponding residue is missing in the cluster-coordinating loop of plant-type [2Fe-2S] ferredoxins. To probe the function of Thr-49 in a vertebrate ferredoxin, replacement mutants T49A, T49S, T49L, and T49Y, and a deletion mutant, T49Delta, were generated and expressed in Escherichia coli. CD spectra of purified proteins indicate changes of the [2Fe-2S] center geometry only for mutant T49Delta, whereas NMR studies reveal no transduction of structural changes to the interaction domain. The redox potential of T49Delta (-370 mV) is lowered by approximately 100 mV compared with wild type adrenodoxin and reaches the potential range of plant-type ferredoxins (-305 to -455 mV). Substitution mutants show moderate changes in the binding affinity to the redox partners. In contrast, the binding affinity of T49Delta to adrenodoxin reductase and cytochrome P-450 11A1 (CYP11A1) is dramatically reduced. These results led to the conclusion that Thr-49 modulates the redox potential in adrenodoxin and that the cluster-binding loop around Thr-49 represents a new interaction region with the redox partners adrenodoxin reductase and CYP11A1. In addition, variations of the apparent rate constants of all mutants for CYP11A1 reduction indicate the participation of residue 49 in the electron transfer pathway between adrenodoxin and CYP11A1.  相似文献   

12.
Trypanosome lytic factor (TLF-1) is an unusual high density lipoprotein (HDL) found in human serum that is toxic to Trypanosoma brucei brucei and may be critical in preventing human infections by this parasite. TLF-1 is composed of four major apolipoproteins: apolipoprotein AI, apolipoprotein AII, paraoxonase, and the primate-specific haptoglobin-related protein (Hpr). Hpr is greater than 90% homologous to haptoglobin (Hp), an abundant acute phase serum protein. Killing of trypanosomes by TLF-1 requires cell surface binding, endocytosis, and subsequent lysosomal targeting. Low temperature binding studies reveal two receptors for TLF-1: one that is high affinity/low capacity (K(d) approximately 12 nm, 350 receptors per cell) and another that binds with low affinity/high capacity (K(d) approximately 1 microm, 60,000 receptors per cell). The low affinity binding is competed by nonlytic human HDL and is likely to be apolipoprotein AI-mediated. Purified human Hpr and human Hp bind to trypanosomes, are internalized, and are targeted to the lysosome. Furthermore, Hpr shows competition for TLF-1 binding, and a monoclonal antibody against Hpr prevents both TLF-1 uptake and trypanosome killing. Based on these results, we propose that Hpr mediates the high affinity binding of TLF-1 to T. b. brucei through a haptoglobin-like receptor.  相似文献   

13.
The cell surface molecules CD4 and CD8 greatly enhance the sensitivity of T-cell antigen recognition, acting as "co-receptors" by binding to the same major histocompatibility complex (MHC) molecules as the T-cell receptor (TCR). Here we use surface plasmon resonance to study the binding of CD8alphaalpha to class I MHC molecules. CD8alphaalpha bound the classical MHC molecules HLA-A*0201, -A*1101, -B*3501, and -C*0702 with dissociation constants (K(d)) of 90-220 microm, a range of affinities distinctly lower than that of TCR/peptide-MHC interaction. We suggest such affinities apply to most CD8alphaalpha/classical class I MHC interactions and may be optimal for T-cell recognition. In contrast, CD8alphaalpha bound both HLA-A*6801 and B*4801 with a significantly lower affinity (>/=1 mm), consistent with the finding that interactions with these alleles are unable to mediate cell-cell adhesion. Interestingly, CD8alphaalpha bound normally to the nonclassical MHC molecule HLA-G (K(d) approximately 150 microm), but only weakly to the natural killer cell receptor ligand HLA-E (K(d) >/= 1 mm). Site-directed mutagenesis experiments revealed that variation in CD8alphaalpha binding affinity can be explained by amino acid differences within the alpha3 domain. Taken together with crystallographic studies, these results indicate that subtle conformational changes in the solvent exposed alpha3 domain loop (residues 223-229) can account for the differential ability of both classical and nonclassical class I MHC molecules to bind CD8.  相似文献   

14.
Quantitative analysis of binding of the bivalent recombinant soluble fusion protein, LFA-3/IgG1, shows that the fusion protein binds to human CD2+ PBLs primarily through low affinity (KD approximately 140 microM) but also through high avidity (90 nM) interactions. The concentration dependence for LFA-3/IgG1 PBL binding took the form of two overlapping bell-shaped curves separated by a clear and reproducible minimum. This was accounted for in part by minor heterogeneity in the LFA-3/IgG1 preparations, and potentially by the ability of the ligand to bind to both CD2 and Fc receptors (FcR), best evidenced by the distinct binding properties of the fusion protein to NK and T cells. The low affinity LFA-3/ IgG1 binding to T cells is consistent with binding to CD2 only, and is in agreement with the low affinity reported for interactions between soluble forms of LFA-3 and CD2 by surface plasmon resonance technology. Moreover, as the low affinity determinations are similar for CD2 on resting and activated T cells, although the CD2 molecule has been reported to be altered to reveal new epitopes upon T cell activation, the binding data argue against multiple cell activation-dependent affinity states of CD2 for LFA-3 binding. This is distinct from that observed with other adhesion partners, and suggests that the different adhesion pathways utilize distinct mechanisms to mediate cell adhesion.  相似文献   

15.
Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an approximately 58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of approximately 3.6 microg/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed alpha-chitin binding activity with Kd approximately 0.64 microm and Bmax approximately 4.68 micromol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an approximately 8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity.  相似文献   

16.
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGF-beta) superfamily of multifunctional cytokines. BMP induces its signal to regulate growth, differentiation, and apoptosis of various cells upon trimeric complex formation with two distinct type I and type II receptors on the cell surface: both are single-transmembrane serine/threonine kinase receptors. To identify the amino acid residues on BMP type I receptor responsible for its ligand binding, the structure-activity relationship of the extracellular ligand-binding domain of the BMP type IA receptor (sBMPR-IA) was investigated by alanine-scanning mutagenesis. The mutant receptors, as well as sBMPR-IA, were expressed as fusion proteins with thioredoxin in Escherichia coli, and purified using reverse phase high performance liquid chromatography (RP-HPLC) after digestion with enterokinase. Structural analysis of the parent protein and representative mutants in solution by CD showed no detectable differences in their folding structures. The binding affinity of the mutants to BMP-4 was determined by surface plasmon resonance biosensor. All the mutant receptors examined, with the exception of Y70A, displayed reduced affinities to BMP-4 with the rank order of decreases: I52A (17-fold) approximately F75A (15-fold) > T64A (4-fold) = T62A (4-fold) approximately E54A (3-fold). The decreases in binding affinity observed for the latter three mutants are mainly due to decreased association rate constants while alterations in rate constants both, for association and dissociation, result in the drastically reduced affinities for the former two mutants. These results allow us to conclude that sBMPR-IA recognizes the ligand using the concave face of the molecule. The major ligand-binding site of the BMP type IA receptor consists of Phe75 in loop 2 and Ile52, Glu54, Thr62 and Thr64 on the three-stranded beta-sheet. These findings should provide a general basis for the ligand/type I receptor recognition in the TGF-beta superfamily.  相似文献   

17.
The co-operative calcium binding mechanism of the two C-terminal EF-hands of human alphaII-spectrin has been investigated by site-specific mutagenesis and multi-dimensional NMR spectroscopy. To analyse the calcium binding of each EF-hand independently, two mutant structures (E33A and D69S) of wild type alpha-spectrin were prepared. According to NMR analysis both E33A and D69S were properly folded. The unmutated EF-hand in these mutants remained nearly intact and active in calcium binding, whereas the mutated EF-hand lost its affinity for calcium completely. The apparent calcium binding affinity of the E33A mutant was much lower compared to the D39S mutant (approximately 2470 microM and approximately 240 microM, respectively). When the chemical shift perturbations were followed upon calcium titration, a positive correlation between the D69S mutant and the binding of the first calcium ion to the wild type was revealed. These observations showed that the first EF-hand in spectrin binds the first calcium ion and thereby triggers a conformational change that allows the second calcium ion to bind to the other EF-hand.  相似文献   

18.
Intracellular trafficking of ionotropic glutamate receptors is controlled by multiple discrete determinants in receptor subunits. Most such determinants have been localized to the cytoplasmic carboxyl-terminal domain, but other domains in the subunit proteins can play roles in modulating receptor surface expression. Here we demonstrate that formation of an intact glutamate binding site also acts as an additional quality-control check for surface expression of homomeric and heteromeric kainate receptors. A key ligand-binding residue in the KA2 subunit, threonine 675, was mutated to either alanine or glutamate, which eliminated affinity for the receptor ligands kainate and glutamate. We found that plasma membrane expression of heteromeric GluR6/KA2(T675A) or GluR6/KA2(T675E) kainate receptors was markedly reduced compared with wild-type GluR6/KA2 receptors in transfected HEK 293 and COS-7 cells and in cultured neurons. Surface expression of homomeric KA2 receptors lacking a retention/retrieval determinant (KA2-R/A) was also reduced upon mutation of Thr-675 and elimination of the ligand binding site. KA2 Thr-675 mutant subunits were able to co-assemble with GluR5 and GluR6 subunits and were degraded at the same rate as wild-type KA2 subunit protein. These results suggest that glutamate binding and associated conformational changes are prerequisites for forward trafficking of intracellular kainate receptors following multimeric assembly.  相似文献   

19.
This study defines the molecular basis of the FcalphaRI (CD89):IgA interaction, which is distinct from that of the other leukocyte Fc receptors and their Ig ligands. A comprehensive analysis using both cell-free (biosensor) and cell-based assays was used to define and characterize the IgA binding region of FcalphaRI. Biosensor analysis of mutant FcalphaRI proteins showed that residues Y35, Y81, and R82 were essential for IgA binding, and R52 also contributed. The role of the essential residues (Y35 and R82) was confirmed by analysis of mutant receptors expressed on the surface of mammalian cells. These receptors failed to bind IgA, but were detected by the mAb MY43, which blocks IgA binding to FcalphaRI, indicating that its epitope does not coincide with these IgA binding residues. A homology model of the ectodomains of FcalphaRI was generated based on the structures of killer Ig-like receptors, which share 30-34% identity with FcalphaRI. Key structural features of killer Ig-like receptors are appropriately reproduced in the model, including the structural conservation of the interdomain linker and hydrophobic core (residues V17, V97, and W183). In this FcalphaRI model the residues forming the IgA binding site identified by mutagenesis form a single face near the N-terminus of the receptor, distinct from other leukocyte Fc receptors where ligand binding is in the second domain. This taken together with major differences in kinetics and affinity for IgA:FcalphaRI interaction that were observed depending on whether FcalphaRI was immobilized or in solution suggest a mode of interaction unique among the leukocyte receptors.  相似文献   

20.
Eukaryotic cell cycle progression is controlled by a family of protein kinases known as cyclin-dependent kinases (Cdks). Two steps are essential for Cdk activation: binding of a cyclin and phosphorylation on a conserved threonine residue by the Cdk-activating kinase (CAK). We have studied the interplay between these regulatory mechanisms during the activation of the major Saccharomyces cerevisiae Cdk, Cdc28p. We found that the majority of Cdc28p was phosphorylated on its activating threonine (Thr-169) throughout the cell cycle. The extent of Thr-169 phosphorylation was similar for monomeric Cdc28p and Cdc28p bound to cyclin. By varying the order of the addition of cyclin and Cak1p, we determined that Cdc28p was activated most efficiently when it was phosphorylated before cyclin binding. Furthermore, we found that a Cdc28p(T169A) mutant, which cannot be phosphorylated, bound cyclin less well than wild-type Cdc28p in vivo. These results suggest that unphosphorylated Cdc28p may be unable to bind tightly to cyclin. We propose that Cdc28p is normally phosphorylated by Cak1p before it binds cyclin. This activation pathway contrasts with that in higher eukaryotes, in which cyclin binding appears to precede activating phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号