首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feng B  Jiao P  Nie Y  Kim T  Jun D  van Rooijen N  Yang Z  Xu H 《PloS one》2011,6(9):e24358

Background

Obesity-related adipose inflammation has been thought to be a causal factor for the development of insulin resistance and type 2 diabetes. Infiltrated macrophages in adipose tissue of obese animals and humans are an important source for inflammatory cytokines. Clodronate liposomes can ablate macrophages by inducing apoptosis. In this study, we aim to determine whether peritoneal injection of clodronate liposomes has any beneficial effect on systemic glucose homeostasis/insulin sensitivity and whether macrophage content in visceral adipose tissue will be reduced in diet-induced obese (DIO) mice.

Methodology/Principal Findings

Clodronate liposomes were used to deplete macrophages in lean and DIO mice. Macrophage content in visceral adipose tissue, metabolic parameters, glucose and insulin tolerance, adipose and liver histology, adipokine and cytokine production were examined. Hyperinsulinemic-euglycemic clamp study was also performed to assess systemic insulin sensitivity. Peritoneal injection of clodronate liposomes significantly reduced blood glucose and insulin levels in DIO mice. Systemic glucose tolerance and insulin sensitivity were mildly improved in both lean and DIO mice treated with clodronate liposomes by intraperitoneal (ip) injection. Hepatosteatosis was dramatically alleviated and suppression of hepatic glucose output was markedly increased in DIO mice treated with clodronate liposomes. Macrophage content in visceral adipose tissue of DIO mice was effectively decreased without affecting subcutaneous adipose tissue. Interestingly, levels of insulin sensitizing hormone adiponectin, including the high molecular weight form, were significantly elevated in circulation.

Conclusions/Significance

Intraperitoneal injection of clodronate liposomes reduces visceral adipose tissue macrophages, improves systemic glucose homeostasis and insulin sensitivity in DIO mice, which can be partially attributable to increased adiponectin levels.  相似文献   

2.
Metabolic syndrome is common in the general population, but there is little information available on the underlying signaling mechanisms regulating triglyceride (TG) content in the body. In the current study, we have uncovered a role for protein kinase Cbeta (PKCbeta) in TG homeostasis by studying the consequences of a targeted disruption of this kinase. PKCbeta(-/-) mutant mice were considerably leaner and the size of white fat depots was markedly decreased compared with wild-type littermates. TG content in the liver and skeletal muscle of PKCbeta(-/-) mice was also significantly low. Interestingly, mutant animals were hyperphagic and exhibited higher food intake and reduced feed efficiency versus wild type. The protection from obesity involves elevated oxygen consumption/energy expenditure and increased fatty acid oxidation in adipose tissue with concurrent increased mitochondria genesis, up-regulation of PGC-1alpha and UCP-2, and down-regulation of perilipin. The ability of PKCbeta deficiency to promote fat burning in adipocytes may suggest novel therapeutic strategies for obesity and obesity-related disorders.  相似文献   

3.
Endogenous opioids, particularly dynorphins, have been implicated in regulation of energy balance, but it is not known how they mediate this in vivo. We investigated energy homeostasis in dynorphin knockout mice (Dyn(-/-) mice) and probed the interactions between dynorphins and the neuropeptide Y (NPY) system. Dyn(-/-) mice were no different from wild types with regards to body weight and basal and fasting-induced food intake, but fecal output was increased, suggesting decreased nutrient absorption, and they had significantly less white fat and lost more weight during a 24-h fast. The neuroendocrine and thermal responses to fasting were at least as pronounced in Dyn(-/-) as in wild types, and there was no stimulatory effect of dynorphin knockout on 24-h energy expenditure (kilocalories of heat produced) or physical activity. However, Dyn(-/-) mice showed increased circulating concentrations of 3,4-dihydroxyphenlacetic acid and 3,4-dihydroxyphenylglycol, suggesting increased activity of the sympathetic nervous system. The respiratory exchange ratio of male but not female Dyn(-/-) mice was reduced, demonstrating increased fat oxidation. Interestingly, expression of the orexigenic acting NPY in the hypothalamic arcuate nucleus was reduced in Dyn(-/-) mice. However, fasting-induced increases in pre-prodynorphin expression in the arcuate nucleus, the paraventricular nucleus, and the ventromedial hypothalamus but not the lateral hypothalamus were abolished by deletion of Y(1) but not Y(2) receptors. Therefore, ablation of dynorphins results in increases in fatty acid oxidation in male mice, reductions in adiposity, and increased weight loss during fasting, possibly via increases in sympathetic activity, decreases in intestinal nutrient absorption, and interactions with the NPYergic system.  相似文献   

4.
Agonists to opioid receptors induce a positive energy balance, whereas antagonists at these receptors reduce food intake and body weight in rodent models of obesity. An analog of 3,4-dimethyl-4-(3-hydroxyphenyl)piperidine, LY255582, is a potent non-morphinan antagonist for mu-, kappa-, and delta-receptors (K(i) of 0.4, 2.0, and 5.2 nM, respectively). In the present study, we examined the effects of oral LY255582 treatment on caloric intake, calorie expenditure, and body composition in dietary-induced obese rats. Acute oral treatment of LY255582 produced a dose-dependent decrease in energy intake and respiratory quotient (RQ), which correlated with the occupancy of central opioid receptors. Animals receiving chronic oral treatment with LY255582 for 14 days maintained a negative energy balance that was sustained by increased lipid use. Analysis of body composition revealed a reduction in fat mass accretion, with no change in lean body mass, in animals treated with LY255582. Therefore, chronic treatment with LY255582 reduces adipose tissue mass by reducing energy intake and stimulating lipid use.  相似文献   

5.
Huang JY  Chiang MT  Yet SF  Chau LY 《PloS one》2012,7(6):e38626
Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1(+/-) bone marrow were fed with HFD for over 24 weeks, the HO-1(+/-) chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1(+/-) macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1(+/-) macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity.  相似文献   

6.
7.
Growing evidence suggests that oxytocin plays an important role in the regulation of energy balance and that central oxytocin administration induces weight loss in diet-induced obese (DIO) animals. To gain a better understanding of how oxytocin mediates these effects, we examined feeding and neuronal responses to oxytocin in animals rendered obese following exposure to either a high-fat (HFD) or low-fat diet (LFD). Our findings demonstrate that peripheral administration of oxytocin dose-dependently reduces food intake and body weight to a similar extent in rats maintained on either diet. Moreover, the effect of oxytocin to induce weight loss remained intact in leptin receptor-deficient Koletsky (fa(k)/fa(k)) rats relative to their lean littermates. To determine whether systemically administered oxytocin activates hindbrain areas that regulate meal size, we measured neuronal c-Fos induction in the nucleus of the solitary tract (NTS) and area postrema (AP). We observed a robust neuronal response to oxytocin in these hindbrain areas that was unexpectedly increased in rats rendered obese on a HFD relative to lean, LFD-fed controls. Finally, we report that repeated daily peripheral administration of oxytocin in DIO animals elicited a sustained reduction of food intake and body weight while preventing the reduction of energy expenditure characteristic of weight-reduced animals. These findings extend recent evidence suggesting that oxytocin circumvents leptin resistance and induces weight-loss in DIO animals through a mechanism involving activation of neurons in the NTS and AP, key hindbrain areas for processing satiety-related inputs.  相似文献   

8.
Exercise promotes weight loss and improves insulin sensitivity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Obesity correlates with increased production of inflammatory cytokines, which in turn, contributes to systemic insulin resistance. To test the hypothesis that exercise mitigates this inflammatory response, thereby improving insulin sensitivity, we developed a model of voluntary exercise in mice made obese by feeding of a high fat/high sucrose diet (HFD). Over four wk, mice fed chow gained 2.3 +/- 0.3 g, while HFD mice gained 6.8 +/- 0.5 g. After 4 wk, mice were subdivided into four groups: chow-no exercise, chow-exercise, HFD-no exercise, HFD-exercise and monitored for an additional 6 wk. Chow-no exercise and HFD-no exercise mice gained an additional 1.2 +/- 0.3 g and 3.3 +/- 0.5 g respectively. Exercising mice had higher food consumption, but did not gain additional weight. As expected, GTT and ITT showed impaired glucose tolerance and insulin resistance in HFD-no exercise mice. However, glucose tolerance improved significantly and insulin sensitivity was completely normalized in HFD-exercise animals. Furthermore, expression of TNF-alpha, MCP-1, PAI-1 and IKKbeta was increased in adipose tissue from HFD mice compared with chow mice, whereas exercise reversed the increased expression of these inflammatory cytokines. In contrast, expression of these cytokines in liver was unchanged among the four groups. These results suggest that exercise partially reduces adiposity, reverses insulin resistance and decreases adipose tissue inflammation in diet-induced obese mice, despite continued consumption of HFD.  相似文献   

9.
Peripheral administration of baclofen significantly reduced food intake and body weight increase in both diabetic (db/db) and diet-induced obese mice for 5 weeks, whereas it had no significant effects on energy balance in their lean control mice. Despite the decreased body weight, neuropeptide Y expression in the arcuate nucleus was significantly decreased, whereas pro-opiomelanocortin expression was significantly increased by baclofen treatment. These data demonstrate that the inhibitory effects of baclofen on body weight in the obese mice were mediated via the arcuate nucleus at least partially, and suggest that GABA(B) agonists could be a new therapeutic reagent for obesity.  相似文献   

10.
11.
Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Lepr(fa)/Lepr(fa)) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (Lepr(FA)/Lepr(FA)) and obese (Lepr(fa)/Lepr(fa)) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.  相似文献   

12.
The seminal discovery of browning of white adipose tissue (WAT) holds great promise for the treatment of obesity and metabolic syndrome. DJ-1 is evolutionarily conserved across species, and mutations in DJ-1 have been identified in Parkinson's disease. Higher levels of DJ-1 are associated with obesity, but the underlying mechanism is less understood. Here, we report the previously unappreciated role of DJ-1 in white adipocyte biology in mature models of obesity. We used DJ-1 knockout (KO) mouse models and wild-type littermates maintained on a normal diet or high-fat diet as well as in vitro cell models to show the direct effects of DJ-1 depletion on adipocyte phenotype, thermogenic capacity, fat metabolism, and microenvironment profile. Global DJ-1 KO mice show increased sympathetic input to WAT and β3-adrenergic receptor intracellular signaling, leading to a previously unrecognized compensatory mechanism through browning of WAT with associated characteristics, including high mitochondrial contents, reduced lipid accumulation, adequate vascularization and attenuated autophagy. DJ-1 KO mice had normal body weight, energy balance, and adiposity, which were associated with protective effects on healthy WAT expansion by hyperplasia. Our findings revealed that browning of inguinal WAT occurred in DJ-1 KO mice that do not show increased predisposition to obesity and suggest that such potential mechanism may overcome the adverse metabolic consequences of obesity independent of an effect on body weight. Here, we provide the first direct evidence that targeting DJ-1 in adipocyte metabolic health may offer a unique therapeutic strategy for the treatment of obesity.  相似文献   

13.
Energy homeostasis and feeding are regulated by the central nervous system. C75, a fatty acid synthase (FAS) inhibitor, causes weight loss and anorexia, implying a novel central nervous system pathway(s) for sensing energy balance. AMP-activated protein kinase (AMPK), a sensor of peripheral energy balance, is phosphorylated and activated when energy sources are low. Here, we identify a role for hypothalamic AMPK in the regulation of feeding behavior and in mediating the anorexic effects of C75. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, increased food intake, whereas compound C, an inhibitor of AMPK, decreased food intake. C75 rapidly reduced the level of the phosphorylated AMPK alpha subunit (pAMPKalpha) in the hypothalamus, even in fasted mice that had elevated hypothalamic pAMPKalpha levels. Furthermore, AICAR reversed both the C75-induced anorexia and the decrease in hypothalamic pAMPKalpha levels. C75 elevated hypothalamic neuronal ATP levels, which may contribute to the mechanism by which C75 decreased AMPK activity. C75 reduced the levels of pAMPKalpha and phosphorylated cAMP response element-binding protein (pCREB) in the arcuate nucleus neurons of the hypothalamus, suggesting a mechanism for the reduction in NPY expression seen with C75 treatment. These data indicate that modulation of FAS activity in the hypothalamus can alter energy perception via AMPK, which functions as a physiological energy sensor in the hypothalamus.  相似文献   

14.

Objective:

Visceral obesity contributes to the development of obesity‐related disorders such as diabetes, hyperlipidemia, and fatty liver disease, as well as cardiovascular diseases. In this study, we determined whether topical application of capsaicin can reduce fat accumulation in visceral adipose tissues.

Methods and Results:

We first observed that topical application of 0.075% capsaicin to male mice fed a high‐fat diet significantly reduced weight gain and visceral fat. Fat cells were markedly smaller in the mesenteric and epididymal adipose tissues of mice treated with capsaicin cream. The capsaicin treatment also lowered serum levels of fasting glucose, total cholesterol, and triglycerides. Immunoblot analysis and RT‐PCR revealed increased expression of adiponectin and other adipokines including peroxisome proliferator‐activated receptor (PPAR) α, PPARγ, visfatin, and adipsin, but reduced expression of tumor necrosis factor‐α and IL‐6.

Conclusions:

These results indicate that topical application of capsaicin to obese mice limits fat accumulation in adipose tissues and may reduce inflammation and increase insulin sensitivity.  相似文献   

15.
The aim of this study was to investigate the central actions of the stable pansomatostatin peptide agonist, ODT8-SST on body weight. ODT8-SST or vehicle was acutely (1μg/rat) injected or chronically infused (5μg/rat/d, 14d) intracerebroventricularly and daily food intake, body weight and composition were monitored. In lean rats, neither acute nor chronic ODT8-SST influenced daily food intake while body weight was reduced by 2.2% after acute injection and there was a 14g reduction of body weight gain after 14d compared to vehicle (p<0.01). In diet-induced obese (DIO) rats, chronic ODT8-SST increased cumulative 2-week food intake compared to vehicle (+14%, p<0.05) and also blunted body weight change (-11g, p<0.05). ODT8-SST for 14d reduced lean mass (-22g and -25g respectively, p<0.001) and total water (-19g and -22g respectively, p<0.001) in lean and DIO rats and increased fat mass in DIO (+16g, p<0.001) but not lean rats (+1g, p>0.05) compared to vehicle. In DIO rats, ODT8-SST reduced ambulatory (-27%/24h, p<0.05) and fine movements (-38%, p<0.01) which was associated with an increased positive energy balance compared to vehicle (+50g, p<0.01). Chronic central somatostatin receptor activation in lean rats reduces body weight gain and lean mass independently of food intake which is likely related to growth hormone inhibition. In DIO rats, ODT8-SST reduces lean mass but promotes food intake and fat mass, indicating differential responsiveness to somatostatin under obese conditions.  相似文献   

16.
PYY(3-36) is a gut-derived hormone acting on hypothalamic nuclei to inhibit food intake. We recently showed that PYY(3-36) acutely reinforces insulin action on glucose disposal in mice. We aimed to evaluate effects of PYY(3-36) on energy metabolism and the impact of chronic PYY(3-36) treatment on insulin sensitivity. Mice received a single injection of PYY(3-36) or were injected once daily for 7 days, and energy metabolism was subsequently measured in a metabolic cage. Furthermore, the effects of chronic PYY(3-36) administration (continuous and intermittent) on glucose turnover were determined during a hyperinsulinemic-euglycemic clamp. PYY(3-36) inhibited cumulative food intake for 30 min of refeeding after an overnight fast (0.29 +/- 0.04 vs. 0.56 +/- 0.12 g, P = 0.036) in an acute setting, but not after 7 days of daily dosing. Body weight, total energy expenditure, and physical activity were not affected by PYY(3-36). However, it significantly decreased the respiratory quotient. Both continuous and intermittent PYY(3-36) treatment significantly enhanced insulin-mediated whole body glucose disposal compared with vehicle treatment (81.2 +/- 6.2 vs. 77.1 +/- 5.2 vs. 63.4 +/- 5.5 micromol.min(-1).kg(-1), respectively). In particular, PYY(3-36) treatment increased glucose uptake in adipose tissue, whereas its impact on glucose disposal in muscle did not attain statistical significance. PYY(3-36) treatment shifts the balance of fuel use in favor of fatty acids and enhances insulin sensitivity in mice, where it particularly promotes insulin-mediated glucose disposal. Notably, these metabolic effects of PYY(3-36) remain unabated after chronic administration, in contrast to its anorexic effects.  相似文献   

17.
18.
Leptin acts within the hypothalamus to diminish food intake. During pregnancy and lactation, both circulating leptin concentrations and food intake are elevated, suggesting an ineffectiveness of leptin to reduce food intake in these mice. Thus, this study tested the ability of intracerebroventricular (ICV) leptin administration to alter food intake during pregnancy and lactation. Mice during the first, second, and third trimesters of pregnancy, lactating mice on postpartum Day 7, and age-matched female mice were used. Plasma leptin concentrations averaged 2.9 +/- 0.3 ng/ml in control mice, increased steadily as pregnancy progressed (3.4 +/- 0.7, 29.8 +/- 4.5, and 40.5 +/- 0.7 ng/ml during the first, second, and third trimesters, respectively), and remained elevated on Day 7 postpartum (26.4 +/- 7.8 ng/ml). Mice were food deprived for 4 h, injected ICV with vehicle or leptin (1 micro g), and food intake was subsequently measured hourly for 3 hr, and after 24 hr. Vehicle-treated pregnant mice consumed marginally more food than cycling control mice, whereas nursing dams ate two to three times as much food as controls. As expected, ICV leptin administration reduced 24-hr food intake of control mice by 2 g, or approximately 50%. ICV-administered leptin was as effective in reducing food intake of pregnant and lactating mice as observed in control mice. Thus, the elevated circulating leptin concentrations observed in pregnant and nursing mice did not alter the ability of ICV-administered leptin to diminish food intake. High plasma concentrations of leptin-binding proteins observed during pregnancy, and probably during lactation, may limit the amount of endogenous leptin reaching the hypothalamus, and may consequently enable increases in food intake concomitant with elevated plasma leptin during these nutritionally demanding periods.  相似文献   

19.
20.
Type 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g?1 day?1, 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (?33%, P<.005) compared with controls. The decrease in white adipose tissue deposition was due to a decrease in adipose cell volume (?33%, P<.05), while no change was noticed in total adipocyte number. In skeletal muscle, in vivo as well as ex vivo myo-inositol treatment increased protein kinase B/Akt phosphorylation under baseline and insulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号