首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The ability of the well known morphogen, retinoic acid (RA), as well as 1,25-dihydroxy-vitamin D3 (VD), whose receptor complex binds a DNA consensus sequence related to that of the retinoic acid receptor, to regulate expression of the retinoblastoma (RB) tumor suppressor gene in a context of induced cell differentiation was characterized. HL-60 human promyelocytic leukemia cells were induced to undergo myeloid or monocytic terminal cell differentiation by these agents. To investigate the potential coupling between down-regulation of RB and c-myc oncogene expression with cell differentiation, dose response relationships for the induced down-regulation of RB and c-myc expression were compared with each other and with induced cell differentiation. The total amount of RB protein per cell increased as cells advanced through the cell cycle, but the amount of RB protein relative to the total cell mass remained approximately constant. Treated with RA or VD, an early progressive decrease in cellular content of the RB protein occurred in all cell cycle phases well before any cell cycle modulation or phenotypic differentiation. For a differentiation-defective variant HL-60 cell line, failure to differentiate was preceded by a failure to down-regulate cellular levels of the RB protein. In dose response experiments, progressively increasing RA or VD concentrations caused progressively greater reductions in RB as well as c-myc expression with an increasing fraction of cells terminally differentiating. For both RA and VD, the dose response relationships for reductions in RB and c-myc expression were similar suggesting that their down-regulation may be coupled. These observations are consistent with a model whereby RB expression acts as a cellular brake to sustain a developmentally ordained state of differentiation (i.e., preserve the "status quo"); and the down-regulation of heterogeneously distributed RB protein per cell below a threshold is part of the metabolic cascade culminating in terminal cell differentiation. Thus, RB may have a role in this developmental context.  相似文献   

4.
5.
CSFs may be useful in improving the clinical effectiveness of cytosine arabinoside (ara-C). In vitro studies have indicated that GM-CSF may be capable of specifically increasing the sensitivity of leukemic cells to this agent. Other studies have indicated that IL-3 may enhance the ability of ara-C to kill leukemic cells by cytokinetic and pharmacologic mechanisms. While the effects of GM-CSF and IL-3 on ara-C-induced differentiation appear limited, the combination of ara-C and leukemia inhibitory factor (LIF) may appear to be useful in overcoming the block in differentiation characteristic of leukemic myeloblasts. On the basis of in vitro studies, clinical trials with ara-C are underway that are examining the usefulness of GM-CSF and IL-3 in cell cycle recruitment of leukemic myeloblasts. These cytokines are also under study in supportive therapy of ara-C-induced myelosuppression. While certain results appear promising, further controlled studies are needed to determine the role of CSFs in improving ara-C therapy.  相似文献   

6.
Although VDR is expressed in all the acute myeloid leukemia cell populations studied, most of these leukemias do not exhibit any phenotypic response when exposed to VD. To determine whether VD resistance is related to an altered VDR function, we performed an analysis of VDR expression, phosphorylation, DNA binding capacity and transactivation activity in several leukemic myeloid cell lines arrested at different levels of maturation. Our results indicate that VD induces a clear phenotypic effect, i.e. terminal monocytic differentiation, only in leukemic cells of M2/M3 (intermediate myeloblasts) and M5 (monoblasts) types but not in erythroid precursor cells, early leukemic myeloblasts (M0/M1 type) and promyelocytes (M3 type). VDR expression and function are evident in all the nuclear extracts obtained from the different myeloid cell lines after 12 h of VD treatment, but VD activation of monocytic differentiation is limited to a narrow differentiation window characterized by the M2 type myeloid cellular context.  相似文献   

7.
8.
Retinoids play important roles in cell differentiation and apoptosis, notably in epithelial tissues. Their utility in cancer therapy has been demonstrated in specific cancer types. Use of retinoic acid (RA) in the treatment of acute promyelocytic leukemia was the first successful example of retinoid-based differentiation therapy. RA has since been evaluated for treatment of other cancers, revealing variable effectiveness. The observation that expression of enzymes involved in RA biosynthesis is suppressed during tumorigenesis suggests that intra-tumor depletion in RA levels may contribute to tumor development and argues for the use of retinoids in cancer treatment. However, the induction of RA-inactivating enzymes is one of the mechanisms that may limit the efficacy of retinoid therapy and contribute to acquired resistance to RA treatment, suggesting that retinoic acid metabolism blocking agents may be effective agents in differentiation therapy.  相似文献   

9.
Three human leukemia cell lines (TALL-101, AML-193, and MV4-11) that require granulocyte/macrophage-colony stimulating factor (GM-CSF) for growth in a chemically defined medium were examined for their response to recombinant human (rh) cytokines. Either rh interleukin (IL)-3 or rhGM-CSF alone supported the long term growth of all three cell lines, and the two growth factors acted synergistically to stimulate the proliferation of the early T lymphoblastic leukemia (TALL-101) and of the monocytic leukemia (AML-193) cells. However, IL-3 antagonized the proliferation of the biphenotypic B-myelomonocytic leukemia (MV4-11) cells in the presence of GM-CSF when both factors were used at very low concentrations. The rh granulocyte (G)-CSF independently supported the long and short term growth of AML-193 and MV4-11, respectively, and synergized with GM-CSF in inducing proliferation of these cells. By contrast, G-CSF did not stimulate TALL-101 cell growth and antagonized the effect of GM-CSF such that proliferation was arrested. Although neither rh macrophage (M)-CSF nor rhIL-1 alpha independently promoted proliferation of the three leukemia cell lines, these cytokines were able to either up- or down-regulate the GM-CSF-dependent growth of these cells. Taken together, these data demonstrate that leukemic cells often require the synergistic action of several cytokines for optimal growth, whereas other combinations of factors may be growth-inhibitory. This raises the possibility that multiple hemopoietic growth factors sustain or control leukemic cell proliferation also in vivo. In addition, the observation the G-CSF, M-CSF, and IL-1 alpha can, in some cases, arrest cell proliferation without inducing differentiation suggests that the programs of proliferative arrest and differentiation in leukemic cells can be dissociated.  相似文献   

10.
Although hematopoietic growth factors influence renewal and differentiation of blast progenitors in acute myelogenous leukemia (AML), morphological maturation of leukemic blasts is thought a rare event, even when cultured in the presence of appropriate growth stimulants. However, light microscopic observation may not be sufficient to clarify precisely the effects of hematopoietic growth factors on the morphological differentiation of leukemic blasts. In this study, using cell culture techniques and electron microscopic cytochemistry for platelet peroxidase (PPO), we studied the effects of interleukin-3 (IL-3) and interleukin-6 (IL-6), both of which are considered to play an important role in normal megakaryocytopoiesis, on the growth and differentiation of blast cells from two patients with childhood acute megakaryoblastic leukemia (AMKL). In both of the two cases, IL-3 stimulated leukemic colony formation in methylcellulose culture, whereas IL-6 showed little such activity. However, in suspension culture, IL-6 was active in promoting megakaryocytic differentiation, although incomplete, as detected by increase in the number of PPO-positive cells, some having demarcation membrane-like structure. This effect was evident in culture with IL-6 alone in one patient, but it was detectable only when IL-6 was used in combination with IL-3 in the other patient. In contrast, IL-3 alone stimulated differentiation towards myeloid but not megakaryocytic lineage. These results indicate that IL-3 and IL-6 have a distinct role in leukemic megakaryocytopoiesis (IL-3 stimulates growth, whereas IL-6 promotes morphological differentiation) and that cooperation between these two cytokines functions most effectively for megakaryocytic differentiation of AMKL cells in a fashion similar to that for normal megakaryocytopoiesis.  相似文献   

11.
In man, hematologic abnormalities precede the development of acute myeloblastic leukemia in about one-third of individuals. This preleukemic state may represent a stage of adult leukemia wherein small numbers of leukemic cells are present and the normal marrow stem cell compartment has not been seriously compromised. A syndrome resembling human preleukemia occurs in cats infected with feline leukemia virus (FeLV). This disorder is characterized by anemia, leukopenia or thrombocytopenia occurring weeks or months prior to the development of feline acute leukemia. The natural occurrence of this syndrome in this domestic animal population makes it a potential model of human preleukemia. Initial poor results of therapy of human preleukemia presently prohibit one from carrying out controlled trials with chemotherapeutic agents in such a group of patients. Preliminary trials with chemo- and/or immunotherapy may be more easily attempted with FeLV infected preleukemic cats.  相似文献   

12.
Recombinant human leukocyte interferon (IFN-alpha A) inhibits growth of the human promyelocytic leukemic cell line HL-60 without inducing these cells to differentiate terminally. When IFN-alpha A is combined with agents capable of inducing differentiation in HL-60 cells, such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA), cis or trans retinoic acid (RA) or dimethylsulfoxide (DMSO), growth suppression and induction of differentiation are dramatically increased. By growing HL-60 cells in increasing concentrations of TPA, RA, or DMSO, a series of sublines have been developed which are resistant to the usual growth inhibition and induction of differentiation seen when wild type HL-60 cells are exposed to these agents. Treatment of these resistant HL-60 cells with the combination of IFN-alpha A and the appropriate inducer results, however, in a synergistic suppression in cell growth and a concomitant induction of terminal differentiation. The ability of interferon to interact synergistically with agents which promote leukemic cell maturation may represents a novel means of reducing resistant leukemic cell populations.  相似文献   

13.
The BCR-ABL translocation is found in chronic myeloid leukemia (CML) and in Ph+ acute lymphoblastic leukemia (ALL) patients. Although imatinib and its analogues have been used as front-line therapy to target this mutation and control the disease for over a decade, resistance to the therapy is still observed and most patients are not cured but need to continue the therapy indefinitely. It is therefore of great importance to find new therapies, possibly as drug combinations, which can overcome drug resistance. In this study, we identified eleven candidate anti-leukemic drugs that might be combined with imatinib, using three approaches: a kinase inhibitor library screen, a gene expression correlation analysis, and literature analysis. We then used an experimental search algorithm to efficiently explore the large space of possible drug and dose combinations and identified drug combinations that selectively kill a BCR-ABL+ leukemic cell line (K562) over a normal fibroblast cell line (IMR-90). Only six iterations of the algorithm were needed to identify very selective drug combinations. The efficacy of the top forty-nine combinations was further confirmed using Ph+ and Ph- ALL patient cells, including imatinib-resistant cells. Collectively, the drug combinations and methods we describe might be a first step towards more effective interventions for leukemia patients, especially those with the BCR-ABL translocation.  相似文献   

14.
Lung HL  Ip WK  Wong CK  Mak NK  Chen ZY  Leung KN 《Life sciences》2002,72(3):257-268
A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.  相似文献   

15.
16.
低氧诱导因子和白血病细胞分化   总被引:3,自引:0,他引:3  
三氧化二砷(As2O3,ATO)是一种新发现的有效治疗急性早幼粒细胞白血病(acute promyelocytic leukemia,APL)的药物。研究发现,该药物在体外诱导细胞分化的能力不如体内明显。以此为基础,最近我们意外地发现模拟低氧化合物和中度低氧环境能够直接在体外诱导急性髓系白血病细胞分化,也选择性地加强三氧化二砷诱导的APL细胞分化。进一步地,间歇性低氧能够显著延长移植的白血病小鼠生存时间,并且抑制白血病细胞浸润并诱导其分化。以这些工作为基础,我们就低氧诱导白血病细胞分化的分子机制进行了深入研究。本文将就相关工作作一综述,并讨论有待进一步研究的问题。  相似文献   

17.
18.
Acute promyelocytic leukemia (APL) cases expressing the t(15,17) product, promyelocytic leukemia (PML)/retinoic acid receptor alpha (RARalpha), have clinical remissions through leukemic cell differentiation after all-trans-retinoic acid (RA) treatment. This differentiation therapy propelled interest in uncovering molecular mechanisms for RA-dependent APL differentiation. We previously identified the ubiquitin-activating enzyme-E1-like protein (UBE1L) as an RA-regulated target gene in APL that triggers PML/RARalpha degradation and apoptosis. This study reports that conjugation of the ubiquitin-like species, interferon-stimulated gene, 15-kDa protein (ISG15), also occurs during RA-induced APL differentiation. Knock-down of UBE1L expression inhibited this conjugation. RA treatment of APL and other RA-responsive leukemic cells induced expression of UBE1L and ISG15 as well as intracellular ISG15 conjugates. Notably, ISG15 conjugation did not occur in RA-resistant NB4-R1 APL cells. Induction of UBE1L and ISG15 along with ISG15 conjugation in RA-sensitive NB4-S1 APL cells were detected following treatment with specific retinoids and type I interferon (IFN). UBE1L and ISG15 mRNAs were co-expressed in normal human tissues that were examined. In contrast, UBE1L mRNA expression was markedly repressed in several cancer cell lines. A physical association was found between UBE1L and ISG15 in vivo. This required the conserved diglycine motif in the carboxyl terminus of ISG15. Targeting UBE1L expression with small inhibitory RNA or small hairpin RNA inhibited IFN and RA-induced ISG15 conjugation. Formation of ISG15 conjugates through induction of an activating enzyme represents a novel pharmacologic mechanism for regulation of this ubiquitin-related species. Taken together, the observed rela tionship between expression of UBE1L and ISG15, their physical association and coordinate regulation, and induced ISG15 conjugation during leukemic cell differentiation implicate an important role for these proteins in retinoid response.  相似文献   

19.
The differentiation of embryonic stem cells (ESCs) into osteoblasts is enhanced to 60% when exposed to vitamin D3 (VD3) but leaves a remainder of one half of the cell population unidentified. To increase differentiation outcome, the known osteoinducers retinoic acid (RA) and bone morphogenetic protein-2 (BMP-2) were evaluated. Initial studies using RA and BMP-2 during early osteogenesis in addition to VD3 increased osteogenic yield in the case of RA, but surprisingly decreased osteogenesis when BMP-2 was administered together with VD3 or RA. This paper describes a comprehensive microarray study examining the gene expression profile of differentiating osteoblasts in these mixed ESC populations. In addition to five other families of signaling molecules (insulin growth factors, prostaglandin, follistatin, TGFbeta2, and Wnt molecules), we identified an endogenous expression pattern for BMPs and RA that differed from our previous exogenous administration of these molecules. By mimicking the change in expression of the RA and BMP-2 families with exogenous supplementation at the correct time, it was then possible to increase the number of ESC-derived osteoblasts to 90%. This effect was mediated through alteration in beta-catenin (CatnB) expression levels and nuclear CatnB activity, both of which are modulated by VD3, RA, and BMP-2. Our results suggest that blockage of CatnB activity by VD3 and RA is opposed by induction of CatnB activity through BMP-2 when administered together. Hence, osteoinduction, in vitro, is an intricate process involving both temporal and quantitative changes in gene expression and CatnB activity.  相似文献   

20.
1,25-dihydroxyvitamin D(3) (VD(3)) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-kappaB) activity. Here we report a time-dependent biphasic regulation of NF-kappaB in VD(3)-treated HL-60 leukemia cells. After VD(3) treatment there was an early approximately 4 h suppression and a late 8-72 h prolonged reactivation of NF-kappaB. The reactivation of NF-kappaB was concomitant with increased IKK activities, IKK-mediated IkappaBalpha phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-kappaB/vitamin D responsive element promoters. In parallel with NF-kappaB stimulation, there was an up-regulation of NF-kappaB controlled inflammatory and anti-apoptotic genes such as TNFalpha, IL-1beta and Bcl-xL. VD(3)-triggered reactivation of NF-kappaB was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD(3)-stimulated IkappaBalpha phosphorylation as well as NF-kappaB-controlled gene expression. The early approximately 4 h VD(3)-mediated NF-kappaB suppression coincided with a prolonged increase of IkappaBalpha protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-kappaB in VD(3)-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD(3)-mediated immune-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号