首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon balance of different aged Scots pine forests in Southern Finland   总被引:4,自引:0,他引:4  
We estimated annual net ecosystem exchange (NEE) of a chronosequence of four Scots pine stands in southern Finland during years 2000–2002 using eddy covariance (EC). Net ecosystem productivity (NEP) was estimated using growth measurements and modelled mass losses of woody debris. The stands were 4, 12, 40 and 75 years old. The 4‐year‐old clearcut was a source of carbon throughout the year combining a low gross primary productivity (GPP) with a total ecosystem respiration (TER) similar to the forest stands. The annual NEE of the clearcut, measured by EC, was 386 g C m?2. Tree growth was negligible and the estimated NEP was ?262 g C m?2 a?1. The annual GPPs at the other sites were close to each other (928?1072 g C m?2 a?1), but TER differed markedly, being greatest at the 12‐year‐old site (905 g C m?2 a?1) and smallest in the 75‐year‐old stand (616 g C m?2 a?1). Measurements of soil CO2 efflux showed that different rates of soil respiration largely explained the differences in TER. The NEE and NEP of the 12‐year‐old stand were close to zero. The forested stands were sinks of carbon. They had similar annual patterns of carbon exchange and half‐hourly eddy fluxes were highly correlated, indicating similar responses to the environment. The NEE in the 40‐year‐old stand varied between ?179 and –192 g C m?2 a?1, while NEP was between 214 and 242 g C m?2 a?1. The annual NEE of the 75‐year‐old stand was 323 g C m?2 and NEP was 252 g C m?2. This indicates that there was no reduction in carbon sink strength with stand age.  相似文献   

2.
The present study examined the effect of land conversion on carbon (C) fluxes using the eddy covariance technique at seven sites in southwestern Michigan (USA). Four sites had been managed as grasslands under the Conservation Reserve Program of the USDA. Three fields had previously been cultivated in a corn/soybean rotation with corn until 2008. The effects of land use change were studied during 2009 when six of the sites were converted to soybean cultivation, with the seventh site kept as a grassland. In winter, the corn fields were C neutral while the CRP lands were C sources, with average emissions of 15 g C m?2 month?1. In April 2009, while the corn fields continued to be a C source to the atmosphere, the CRPs switched to C sinks. In May, herbicide (Glyphosate) was applied to the vegetation before the planting of soybean. After tilling the killed‐grass and planting soybean in mid June, all sites continued to be C sources until the end of June. In July, fields previously planted with corn became C sinks, accumulating 15–50 g C m?2 month?1. In contrast, converted CRP sites continued to be net sources of C despite strong growth of soybean. The conversion of CRP to soybean induced net C emissions with net ecosystem exchange (NEE) ranging from 155.7 (±25) to 128.1 (±27) g C m?2 yr?1. The annual NEE at the reference site was ?81.6 (±26.5) g C m?2 yr?1 while at the sites converted from corn/soybean rotation was remarkably different with two sites being sinks of ?91 (±26) and ?56.0 (±20.7) g C m?2 yr?1 whereas one site was a source of 31.0 (±10.2) g C m?2 yr?1. This study shows how large C imbalances can be invoked in the first year by conversion of grasslands to biofuel crops.  相似文献   

3.
Soil respiration (heterotropic and autotropic respiration, Rg) and aboveground litter fall carbon were measured at three forests at different succession (early, middle and advanced) stages in Dinghushan Biosphere Reserve, Southern China. It was found that the soil respiration increases exponentially with soil temperature at 5 cm depth (Ts) according to the relation Rg=a exp(bTs), and the more advanced forest community during succession has a higher value of a because of higher litter carbon input than the forests at early or middle succession stages. It was also found that the monthly soil respiration is linearly correlated with the aboveground litter carbon input of the previous month. Using measurements of aboveground litter and soil respiration, the net primary productions (NPPs) of three forests were estimated using nonlinear inversion. They are 475, 678 and 1148 g C m?2 yr?1 for the Masson pine forest (MPF), coniferous and broad‐leaf mixed forest (MF) and subtropical monsoon evergreen broad‐leaf forest (MEBF), respectively, in year 2003/2004, of which 54%, 37% and 62% are belowground NPP for those three respective forests if no change in live plant biomass is assumed. After taking account of the decrease in live plant biomass, we estimated the NPP of the subtropical MEBF is 970 g C m?2 yr?1 in year 2003/2004. Total amount of carbon allocated below ground for plant roots is 388 g C m?2 yr?1 for the MPF, 504 g C m?2 yr?1 for the coniferous and broad‐leaf MF and 1254 g C m?2 yr?1 for the subtropical MEBF in 2003/2004. Our results support the hypothesis that the amount of carbon allocation belowground increases during forest succession.  相似文献   

4.
Biomass and soil carbon (C) and nitrogen (N) were measured in a replicated trial after afforestation of a New Zealand upland subhumid low-productivity grassland with four tree stockings, including an unplanted control, of Pinus nigra. Total biomass accumulation of P. nigra in the cool, dry and N-limited environment was low, ranging from 10 to 20 Mg ha−1 dry weight at age 10. Carbon and N accumulation in above- and belowground tree biomass ranged between 5–10 and 0.03–0.07 Mg ha−1, respectively. Soil C, N and bulk density were measured 5 and 10 years after the trees were planted. Soil samples taken at year 5 from between tree rows spaced 5 m apart were considered to be representative of grassland not affected by afforestation. Co-variance analysis showed that, at year 10, soil C and N concentrations, and soil bulk density and C and N mass were not significantly affected by afforestation. The results are at variance with paired site studies in more humid environments that show soil C declines following afforestation, but confirm other studies and model predictions that show soil C decline in the early stages after afforestation in low-productivity environments is limited. Afforestation did not affect root biomass of herbaceous species and this may have contributed to the lack of effect on soil C. Although afforestation by itself did not significantly affect soil C and N, over the measurement period soil C concentrations increased, while soil N declined by 450 kg ha−1. The decline in soil N was confined to lower soil layers and could not be accounted for by uptake in vegetation. The observed decline in soil N is consistent with results of other work in grazed, depleted grassland in the region that indicates losses of soil N occur that cannot be accounted for by pathways directly associated with grazing.  相似文献   

5.
长期封育对不同类型草地碳贮量及其固持速率的影响   总被引:4,自引:0,他引:4  
何念鹏  韩兴国  于贵瑞 《生态学报》2011,31(15):4270-4276
基于4个长期封育草地,采用成对取样方法(封育-自由放牧草地)分析了长期封育和自由放牧草地地上生物量、地表凋落物、0-100 cm根系和土壤的碳氮贮量,探讨了长期封育草地的碳固持速率。实验结果表明:长期封育显著提高了草地碳氮贮量;经30a围封处理后,草地碳固持量为1401-2858 g C m-2,平均2126 g C m-2;草地碳固持速率为46.7-129.2 g C m-2 a-1,平均84.2 g C m-2 a-1。长期封育草地氮固持速率为2.8-14.7 g N m-2 a-1,平均7.3 g N m-2 a-1。封育草地碳和氮固持速率表现为:针茅草地<羊草草地<退化羊草草地<补播黄花苜蓿+羊草草地。长期封育草地0-40 cm土壤碳固持速率相对较高,但下层土壤对草地碳固持的贡献也比较大,因此,未来的相关研究应给予下层土壤更大关注。内蒙古典型草地具有巨大的碳固持潜力,长期封育(或禁牧)是实现其碳固持效应最经济、最有效的途径之一。  相似文献   

6.
Long-term carbon exchange in a sparse, seasonally dry tussock grassland   总被引:6,自引:0,他引:6  
Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long‐term mean=646 mm). The vegetation was sparse with total above‐ground biomass of only 1410 g m?2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m?2 day?1, and it occurred before mid‐summer in both years. On an annual basis, for the dry year, 9 g C m?2 was lost to the atmosphere. During the wet year, 41 g C m?2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled‐up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well‐watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral‐N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m?3) to the driest value obtained (0.04 m3 m?3). Rainfall after periods of drought resulted in large, but short‐lived, respiration pulses that were curvilinearly related to the increase in root‐zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term.  相似文献   

7.
Thus far, grassland ecosystem research has mainly been focused on low‐lying grassland areas, whereas research on high‐altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai‐Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37°36′N, 101°18′E; 325 above sea level [a. s. l.]) on the Qinghai‐Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol–Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (Reco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were ?58.5 and ?75.5 g C m?2, respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4–5 g C m?2 day?1) each of the 2 years. Also, the integrated night‐time NEE reached comparable peak values (1.5–2 g C m?2 day?1) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, Reco was an exponential function of soil temperature, but with season‐dependent values of Q10. The temperature‐dependent respiration model failed immediately after rain events, when large pulses of Reco were observed. Thus, for this alpine shrubland in Qinghai‐Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem Reco and NEE.  相似文献   

8.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

9.
 草地利用方式影响植被群落结构和土壤微环境, 制约草地生态系统碳循环。该文通过测定温带草原在放牧、割草、围封3种利用方式下湿润年(2012年)和干旱年(2011年)的凋落物产量、质量及其分解速率和土壤碳通量, 分析了草地利用方式对土壤呼吸和凋落物的影响, 探讨了凋落物对土壤呼吸的贡献机制。结果表明: 在干旱年份, 放牧样地土壤呼吸最大, 分别达到割草和围封样地的1.5倍和1.29倍; 在湿润年份, 割草样地土壤呼吸最大, 为309 g C·m–2·a–1, 明显高于放牧样地和围封样地。不论干旱年还是湿润年, 围封样地凋落物产量都大于放牧样地和割草样地。3种利用方式下湿润年土壤呼吸和凋落物分解均比干旱年增强。因此, 水分是温带草原植物生长和生态系统碳循环的主要限制因子, 草地利用方式则显著影响凋落物生产和分解。进一步分析表明, 经过两年的分解, 同一样地内凋落物质量C:N下降, N含量和木质素:N升高, 土壤呼吸与凋落物产量、凋落物分解速率以及木质素:N正相关, 而与凋落物C:N负相关。  相似文献   

10.
Eddy covariance was used to measure above-canopy exchanges of CO2 and water vapor at an operational plantation of hybrid poplar (variety ??Walker??) established on marginal agricultural land in east central Alberta, Canada. Winter ecosystem respiration (R e) rates were inferred from seasonal changes in the normalized respiration rate at 10°C (R 10) for the growing season and observations of soil CO2 concentration measured with solid-state probes. Over five consecutive growing seasons following planting, gross ecosystem production (GEP) increased each year, ranging from 21?g?C?m?2?y?1 in year 1 to 469?g?C?m?2?y?1 in year 5. During this period, the annual carbon balance shifted from a net source of greater than 330?g?C?m?2 in year 1 to approximately C-neutral in year 5. Total carbon (C) release over 5?years likely exceeded 630?g?C?m?2. Intra- and interannual variations in temperature and soil water availability greatly affected annual C balance each year. GEP and R e were particularly sensitive to temperature during spring and to soil water availability in summer: year 5 was notable because a cold spring and accumulating drought caused growth and carbon uptake to fall well below their potential. Annual evapotranspiration (ET) increased slightly with leaf area, from 281?mm in year 1 to 323?mm in year 4, but in year 5 it declined, while exceeding total precipitation (P). This trend of increasing annual ET/P suggests that annual GEP could become increasingly water-limited in years with below normal precipitation, as the plantation achieves maximum leaf area. Measured canopy albedos did not change appreciably over three winters, suggesting that estimates of increased radiative forcing resulting from afforestation in high latitudes could be exaggerated in regions where fast-growing deciduous plantations are managed on short (~20-year) rotations.  相似文献   

11.
We evaluated how three co‐occurring tree and four grassland species influence potentially harvestable biofuel stocks and above‐ and belowground carbon pools. After 5 years, the tree Pinus strobus had 6.5 times the amount of aboveground harvestable biomass as another tree Quercus ellipsoidalis and 10 times that of the grassland species. P. strobus accrued the largest total plant carbon pool (1375 g C m?2 or 394 g C m?2 yr), while Schizachyrium scoparium accrued the largest total plant carbon pool among the grassland species (421 g C m?2 or 137 g C m?2 yr). Quercus ellipsoidalis accrued 850 g C m?2, Q. macrocarpa 370 g C m?2, Poa pratensis 390 g C m?2, Solidago canadensis 132 g C m?2, and Lespedeza capitata 283 g C m?2. Only P. strobus and Q. ellipsoidalis significantly sequestered carbon during the experiment. Species differed in total ecosystem carbon accumulation from ?21.3 to +169.8 g C m?2 yr compared with the original soil carbon pool. Plant carbon gains with P. strobus were paralleled by a decrease of 16% in soil carbon and a nonsignificant decline of 9% for Q. ellipsoidalis. However, carbon allocation differed among species, with P. strobus allocating most aboveground in a disturbance prone aboveground pool, whereas Q. ellipsoidalis, allocated most carbon in less disturbance sensitive belowground biomass. These differences have strong implications for terrestrial carbon sequestration and potential biofuel production. For P. strobus, aboveground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant carbon gains. Conversely the harvest of Q. ellipsoidalis aboveground biomass would result in net sequestration of carbon belowground due to its high allocation belowground, but would yield lower amounts of aboveground biomass. Our results demonstrate that plant species can differentially impact ecosystem carbon pools and the distribution of carbon above and belowground.  相似文献   

12.
Heterotrophic soil microorganisms rely on carbon (C) allocated belowground in plant production, but belowground C allocation (BCA) by plants is a poorly quantified part of ecosystem C cycling, especially, in peat soil. We applied a C balance approach to quantify BCA in a mixed conifer-red maple (Acer rubrum) forest on deep peat soil. Direct measurements of CH4 and CO2 fluxes across the soil surface (soil respiration), production of fine and small plant roots, and aboveground litterfall were used to estimate respiration by roots, by mycorrhizae and by free-living soil microorganisms. Measurements occurred in two consecutive years. Soil respiration rates averaged 1.2 bm μmol m? 2 s? 1 for CO2 and 0.58 nmol m? 2 s? 1 for CH4 (371 to 403 g C m? 2 year? 1). Carbon in aboveground litter (144 g C m? 2 year? 1) was 84% greater than C in root production (78 g C m? 2 year? 1). Complementary in vitro assays located high rates of anaerobic microbial activity, including methanogenesis, in a dense layer of roots overlying the peat soil and in large-sized fragments within the peat matrix. Large-sized fragments were decomposing roots and aboveground leaf and twig litter, indicating that relatively fresh plant production supported most of the anaerobic microbial activity. Respiration by free-living soil microorganisms in deep peat accounted for, at most, 29 to 38 g C m? 2 year? 1. These data emphasize the close coupling between plant production, ecosystem-level C cycling and soil microbial ecology, which BCA can help reveal.  相似文献   

13.
Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite‐borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site‐level studies across a range of biomes, with close attention to numerous scaling issues that must be addressed to link ground measurements to the satellite‐based carbon flux estimates. Here, we report results of a study aimed at evaluating MODIS NPP/GPP products at six sites varying widely in climate, land use, and vegetation physiognomy. Comparisons were made for twenty‐five 1 km2 cells at each site, with 8‐day averages for GPP and an annual value for NPP. The validation data layers were made with a combination of ground measurements, relatively high resolution satellite data (Landsat Enhanced Thematic Mapper Plus at ~30 m resolution), and process‐based modeling. There was strong seasonality in the MODIS GPP at all sites, and mean NPP ranged from 80 g C m?2 yr?1 at an arctic tundra site to 550 g C m?2 yr?1 at a temperate deciduous forest site. There was not a consistent over‐ or underprediction of NPP across sites relative to the validation estimates. The closest agreements in NPP and GPP were at the temperate deciduous forest, arctic tundra, and boreal forest sites. There was moderate underestimation in the MODIS products at the agricultural field site, and strong overestimation at the desert grassland and at the dry coniferous forest sites. Analyses of specific inputs to the MODIS NPP/GPP algorithm – notably the fraction of photosynthetically active radiation absorbed by the vegetation canopy, the maximum light use efficiency (LUE), and the climate data – revealed the causes of the over‐ and underestimates. Suggestions for algorithm improvement include selectively altering values for maximum LUE (based on observations at eddy covariance flux towers) and parameters regulating autotrophic respiration.  相似文献   

14.
Net primary production (NPP) was measured in seven black spruce (Picea mariana (Mill.) BSP)‐dominated sites comprising a boreal forest chronosequence near Thompson, Man., Canada. The sites burned between 1998 and 1850, and each contained separate well‐ and poorly drained stands. All components of NPP were measured, most for 3 consecutive years. Total NPP was low (50–100 g C m?2 yr?1) immediately after fire, highest 12–20 years after fire (332 and 521 g C m?2 yr?1 in the dry and wet stands, respectively) but 50% lower than this in the oldest stands. Tree NPP was highest 37 years after fire but 16–39% lower in older stands, and was dominated by deciduous seedlings in the young stands and by black spruce trees (>85%) in the older stands. The chronosequence was unreplicated but these results were consistent with 14 secondary sites sampled across the landscape. Bryophytes comprised a large percentage of aboveground NPP in the poorly drained stands, while belowground NPP was 0–40% of total NPP. Interannual NPP variability was greater in the youngest stands, the poorly drained stands, and for understory and detritus production. Net ecosystem production (NEP), calculated using heterotrophic soil and woody debris respiration data from previous studies in this chronosequence, implied that the youngest stands were moderate C sources (roughly, 100 g C m?2 yr?1), the middle‐aged stands relatively strong sinks (100–300 g C m?2 yr?1), and the oldest stands about neutral with respect to the atmosphere. The ecosystem approach employed in this study provided realistic estimates of chronosequence NPP and NEP, demonstrated the profound impact of wildfire on forest–atmosphere C exchange, and emphasized the need to account for soil drainage, bryophyte production, and species succession when modeling boreal forest C fluxes.  相似文献   

15.
Measurement of net ecosystem exchange was made using the eddy covariance method above three forests along a north-south climatic gradient in Sweden: Flakaliden in the north, Knottåsen in central and Asa in south Sweden. Data were obtained for 2 years at Flakaliden and Knottåsen and for one year at Asa. The net fluxes (Nep) were separated into their main components, total ecosystem respiration (Rt) and gross primary productivity (Pg). The maximum half-hourly net uptake during the heart of the growing season was highest in the southernmost site with ?0.787 mg COm?2 s?1 followed by Knottåsen with ?0.631 mg COm?2 s?1 and Flakaliden with ?0.429 mg COm?2 s?1. The maximum respiration rates during the summer were highest in Knottåsen with 0.245 mg COm?2 s?1 while it was similar at the two other sites with 0.183 mg COm?2 s?1. The annual Nep ranged between uptake of ?304 g C m?2 year?1 (Asa) and emission of 84 g C m?2 year?1 (Knottåsen). The annual Rt and Pg ranged between 793 to 1253 g C m?2 year?1 and ?875 to ?1317 g C m?2 year?1, respectively. Biomass increment measurements in the footprint area of the towers in combination with the measured net ecosystem productivity were used to estimate the changes in soil carbon and it was found that the soils were losing on average 96–125 g C m?2 year?1. The most plausible explanation for these losses was that the studied years were much warmer than normal causing larger respiratory losses. The comparison of net primary productivity and Pg showed that ca 60% of Pg was utilized for autotrophic respiration.  相似文献   

16.
Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured in a northern temperate grassland near Lethbridge, Alberta, Canada for three growing seasons using the eddy covariance technique. The study objectives were to document how NEE and its major component processes—gross photosynthesis (GPP) and total ecosystem respiration (TER)—vary seasonally and interannually, and to examine how environmental and physiological factors influence the annual C budget. The greatest difference among the three study years was the amount of precipitation received. The annual precipitation for 1998 (481.7 mm) was significantly above the 1971–2000 mean (± SD, 377.9 ± 97.0 mm) for Lethbridge, whereas 1999 (341.3 mm) was close to average, and 2000 (275.5 mm) was significantly below average. The high precipitation and soil moisture in 1998 allowed a much higher GPP and an extended period of net carbon gain relative to 1999 and 2000. In 1998, the peak NEE was a gain of 5 g C m?2 d?1 (day 173). Peak NEE was lower and also occurred earlier in the year on days 161 (3.2 g C m?2 d?1) and 141 (2.4 g C m?2 d?1) in 1999 and 2000, respectively. Change in soil moisture was the most important ecological factor controlling C gain in this grassland ecosystem. Soil moisture content was positively correlated with leaf area index (LAI). Gross photosynthesis was strongly correlated with changes in both LAI and canopy nitrogen (N) content. Maximum GPP (Amax: value calculated from a rectangular hyperbola fitted to the relationship between GPP and incident photosynthetic photon flux density (PPFD)) was 27.5, 12.9 and 8.6 µmol m?2 s?1 during 1998, 1999 and 2000, respectively. The apparent quantum yield also differed among years at the time of peak photosynthetic activity, with calculated values of 0.0254, 0.018 and 0.018 during 1998, 1999 and 2000, respectively. The ecosystem accumulated a total of 111.9 g C m?2 from the time the eddy covariance measurements were initiated in June 1998 until the end of December 2000, with most of that C gained during 1998. There was a net uptake of almost 21 g C m?2 in 1999, whereas a net loss of 18 g C m?2 was observed in 2000. The net uptake of C during 1999 was the combined result of slightly higher GPP (287.2 vs. 272.3 g C m?2 year?1) and lower TER (266.6 vs. 290.4 g C m?2 year?1) than occurred in 2000.  相似文献   

17.
Forest soils store a substantial amount of carbon, often more than the forest vegetation does. Estimates of the amount of soil carbon, and in particular estimates of changes in these amounts are still inaccurate. Measuring soil carbon is laborious, and measurements taken at a few statistically unrepresentative sites are difficult to scale to larger areas. We combined a simple dynamic model of soil carbon with litter production estimated on the basis of stand parameters, models of tree allometry and biomass turnover rates of different biomass components. This integrated method was used to simulate soil carbon as forest stands develop. The results were compared with measurements of soil carbon from 64 forest sites in southern Finland. Measured carbon stocks in the organic soil layer increased by an average of 4.7±1.4 g m?2 a?1 with increasing stand age and no significant changes were measured in the amount of carbon in mineral soil. Our integrated method indicated that soil carbon stocks declined to a minimum 20 years after clear‐cutting and the subsequent increase in the soil carbon stock (F/H ? 1 m) was 5.8±1.0 g m?2 a?1 averaged over the period to next harvesting (~125 years). Simulated soil carbon accumulation slowed down considerably in stands older than 50 years. The carbon stock measured (F/H ? 1 m) for the study area averaged 6.8±2.5 kg m?2. The simulated carbon stock in soil was 7.0±0.6 kg m?2 on average. These tests of the validity of the integrated model suggest that this method is suitable for estimating the amount of carbon in soil and its changes on regional scales.  相似文献   

18.
The large organic carbon (C) pools found in noncultivated grassland soils suggest that historically these ecosystems have had high rates of C sequestration. Changes in the soil C pool over time are a function of alterations in C input and output rates. Across the Great Plains and at individual sites through time, inputs of C (via aboveground production) are correlated with precipitation; however, regional trends in C outputs and the sensitivity of these C fluxes to annual variability in precipitation are less well known. To address the role of precipitation in controlling grassland C fluxes, and thereby soil C sequestration rates, we measured aboveground and belowground net primary production (ANPP-C and BNPP-C), soil respiration (SR-C), and litter decomposition rates for 2 years, a relatively dry year followed by a year of average precipitation, at five sites spanning a precipitation gradient in the Great Plains. ANPP-C, SR-C, and litter decomposition increased from shortgrass steppe (36, 454, and 24 g C m–2 y–1) to tallgrass prairie (180, 1221, and 208 g C m–2 y–1 for ANPP-C, SR-C, and litter decomposition, respectively). No significant regional trend in BNPP-C was found. Increasing precipitation between years increased rates of ANPP-C, BNPP-C, SR-C, and litter decomposition at most sites. However, regional patterns of the sensitivity of ANPP-C, BNPP-C, SR-C, and litter decomposition to between-year differences in precipitation varied. BNPP-C was more sensitive to between-year differences in precipitation than were the other C fluxes, and shortgrass steppe was more responsive than were mixed grass and tallgrass prairie.  相似文献   

19.
Carbon sequestration in arid-land forest   总被引:7,自引:0,他引:7  
Rising atmospheric CO2 concentrations may lead to increased water availability because the water use efficiency of photosynthesis (WUE) increases with CO2 in most plant species. This should allow the extension of afforestation activities into drier regions. Using eddy flux, physiological and inventory measurements we provide the first quantitative information on such potential from a 35‐year old afforestation system of Aleppo pine (Pinus halepensis Mill.) at the edge of the Negev desert. This 2800 ha arid‐land forest contains 6.5 ± 1.2 kg C m?2, and continues to accumulate 0.13–0.24 kg C m?2 yr?1. The CO2 uptake is highest during the winter, out of phase with most northern hemispheric forest activity. This seasonal offset offers low latitude forests ~10 ppm higher CO2 concentrations than that available to higher latitude forests during the productive season, in addition to the 30% increase in mean atmospheric CO2 concentrations since the 1850s. Expanding afforestation efforts into drier regions may be significant for C sequestration and associated benefits (restoration of degraded land, reducing runoff, erosion and soil compaction, improving wildlife) because of the large spatial scale of the regions potentially involved (ca. 2 × 109 ha of global shrub‐land and C4 grassland). Quantitative information on forest activities under dry conditions may also become relevant to regions predicted to undergo increasing aridity.  相似文献   

20.
Climate warming is likely to accelerate the decomposition of soil organic carbon (SOC) which may lead to an increase of carbon release from soils, and thus provide a positive feedback to climate change. However, SOC dynamics in grassland ecosystems over the past two decades remains controversial. In this study, we estimated the magnitude of SOC stock in northern China's grasslands using 981 soil profiles surveyed from 327 sites across the northern part of the country during 2001–2005. We also examined the changes of SOC stock by comparing current measurements with historical records of 275 soil profiles derived from China's National Soil Inventory during the 1980s. Our results showed that, SOC stock in the upper 30 cm in northern China's grasslands was estimated to be 10.5 Pg C (1 Pg=1015 g), with an average density (carbon stock per area) of 5.3 kg C m?2. SOC density (SOCD) did not show significant association with mean annual temperature, but was positively correlated with mean annual precipitation. SOCD increased with soil moisture and reached a plateau when soil moisture was above 30%. Site‐level comparison indicated that grassland SOC stock did not change significantly over the past two decades, with a change of 0.08 kg C m?2, ranging from ?0.30 to 0.46 kg C m?2 at 95% confidence interval. Transect‐scale comparison confirmed that grassland SOC stock remained relatively constant from 1980s to 2000s, suggesting that soils in northern China's grasslands have been carbon neutral over the last 20 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号