首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leucine-enkephalin (Leu-Enk) has been shown to be present in endocrine cells of the rat pancreas and may play a role in the modulation of hormone secretion from the islets of Langerhans. Since little is known about the effect of Leu-Enk on insulin and glucagon secretion, it was the aim of this study to determine the role of Leu-Enk on insulin and glucagon secretion from the isolated pancreatic tissue fragments of normal and diabetic rats. Pancreatic tissue fragments of normal and streptozotocin-induced diabetic rats were incubated for 1 h with different concentrations of Leu-Enk (10(-12)-10(-6)M) alone or in combination with either atropine or yohimbine or naloxone. After the incubation period the supernatant was assayed for insulin and glucagon using radioimmunoassay techniques. Leu-Enk (10(-12 )-10(-6)M) evoked large and significant increases in insulin secretion from the pancreas of normal rats. This Leu-Enk-evoked insulin release was significantly (p < 0.05) blocked by atropine, naloxone and yohimbine (all at 10(-6)M). In the same way, Leu-Enk at concentrations of 10(-12)M and 10(-9)M induced significant (p < 0.05) increases in glucagon release from the pancreas of normal rats. Atropine, yohimbine but not naloxone significantly (p < 0.05) inhibited Leu-Enk-evoked glucagon release from normal rat pancreas. In contrast, Leu-Enk failed to significantly stimulate insulin and glucagon secretion from the pancreas of diabetic rats. In conclusion, Leu-Enk stimulates insulin and glucagon secretion from the pancreas of normal rat through the cholinergic, alpha-2 adrenergic and opioid receptor pathways.  相似文献   

2.
The present study was conducted to investigate the functional implication of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I (PAC(1)) receptor in the adrenal catecholamine (CA) secretion induced by either PACAP-27 or vasoactive intestinal polypeptide (VIP) in anesthetized dogs. PACAP-27, VIP, and their respective antagonists were locally infused to the left adrenal gland via the left adrenolumbar artery. Plasma CA concentrations in adrenal venous and aortic blood were determined by means of a high-performance liquid chromatograph coupled with an electrochemical detector. Adrenal venous blood flow was measured by gravimetry. The administration of PACAP-27 (50 ng) resulted in a significant increase in adrenal CA output. VIP (5 microg) also increased the basal CA secretion to an extent comparable to that observed with PACAP-27. In the presence of PACAP partial sequence 6--27 [PACAP-(6--27); a PAC(1) receptor antagonist] at the doses of 7.5 and 15 microg, the CA response to PACAP-27 was attenuated by approximately 50 and approximately 95%, respectively. Although the CA secretagogue effect of VIP was blocked by approximately 85% in the presence of PACAP-(6--27) (15 microg), it remained unaffected by VIP partial sequence 10--28 [VIP-(10--28); a VIP receptor antagonist] at the dose of 15 microg. Furthermore, the CA response to PACAP-27 did not change in the presence of the same dose of VIP--(10--28). The results indicate that PACAP-(6--27) diminished, in a dose-dependent manner, the increase in adrenal CA secretion induced by PACAP-27. The results also indicate that the CA response to either PACAP-27 or VIP was selectively inhibited by PACAP-(6--27) but not by VIP-(10--28). It is concluded that PAC(1) receptor is primarily involved in the CA secretion induced by both PACAP-27 and VIP in the canine adrenal medulla in vivo.  相似文献   

3.
Green BD  Irwin N  Cassidy RS  Gault VA  Flatt PR 《Peptides》2006,27(9):2343-2349
Pituitary adenylate cyclase-activating peptide (PACAP) is a ubiquitous peptide of the glucagon superfamily that is involved in glucose homeostasis and regulation of insulin secretion. This study employed the PACAP receptor antagonist, PACAP(6-27) to evaluate the role of endogenous PACAP in genetic obesity-related diabetes and related metabolic abnormalities using ob/ob mice. Acute in vivo antagonistic potency of PACAP(6-27) was confirmed in ob/ob mice by blockade of the insulin-releasing action but not hyperglycaemia. In longer-term studies, ob/ob mice were given once daily injections of PACAP(6-27) or vehicle for 14 days. Feeding activity, body weight, basal plasma glucose and plasma insulin concentrations were not significantly affected by chronic PACAP(6-27) treatment. However, PACAP(6-27) treatment impaired glucose tolerance, insulin sensitivity and the glycaemic response to feeding. Plasma glucagon and lipids were unchanged. These observations indicate a role of endogenous PACAP for normal glucose homeostasis, but indicate a minor involvement in the regulation of insulin secretion in ob/ob mice.  相似文献   

4.
Atrial natriuretic peptide (ANP) released from enterochromaffin cells helps regulate antral somatostatin secretion, but the mechanisms regulating ANP secretion are not known. We superfused rat antral segments with selective neural agonists/antagonists to identify the neural pathways regulating ANP secretion. The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) stimulated ANP secretion; the effect was abolished by hexamethonium but doubled by atropine. Atropine's effect implied that DMPP activated concomitantly cholinergic neurons that inhibit and noncholinergic neurons that stimulate ANP secretion, the latter effect predominating. Methacholine inhibited ANP secretion. Neither bombesin nor vasoactive intestinal polypeptide stimulated ANP secretion, whereas pituitary adenylate cyclase-activating polypeptide (PACAP)-27, PACAP-38, and maxadilan [PACAP type 1 (PAC1) agonist] each stimulated ANP secretion. The PAC1 antagonist M65 1) abolished PACAP-27/38-stimulated ANP secretion; 2) inhibited basal ANP secretion by 28 +/- 5%, implying that endogenous PACAP stimulates ANP secretion; and 3) converted the ANP response to DMPP from 109 +/- 21% above to 40 +/- 5% below basal, unmasking the cholinergic component and indicating that DMPP activated PACAP neurons that stimulate ANP secretion. Combined atropine and M65 restored DMPP-stimulated ANP secretion to basal levels. ANP secretion in the antrum is thus regulated by intramural cholinergic and PACAP neurons; cholinergic neurons inhibit and PACAP neurons stimulate ANP secretion.  相似文献   

5.
Winzell MS  Ahrén B 《Peptides》2007,28(9):1805-1813
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two closely related neuropeptides that are expressed in islets and in islet parasympathetic nerves. Both peptides bind to their common G-protein-coupled receptors, VPAC1 and VPAC2, and PACAP, in addition to the specific receptor PAC1, all three of which are expressed in islets. VIP and PACAP stimulate insulin secretion in a glucose-dependent manner and they both also stimulate glucagon secretion. This action is achieved through increased formation of cAMP after activation of adenylate cyclase and stimulation of extracellular calcium uptake. Deletion of PAC1 receptors or VPAC2 receptors results in glucose intolerance. These peptides may be of importance in mediating prandial insulin secretion and the glucagon response to hypoglycemia. Animal studies have also suggested that activation of the receptors, in particular VPAC2 receptors, may be used as a therapeutic approach for the treatment of type 2 diabetes. This review summarizes the current knowledge of the potential role of VIP and PACAP in islet function.  相似文献   

6.
Multiple neuroactive substances are secreted by neurons and/or glial cells and modulate the sensitivity to cell death. In the developing retina, it has been shown that increased intracellular levels of cAMP protect cells from degeneration. We tested the hypothesis that the neuroactive peptide pituitary adenylyl cyclase-activating polypeptide (PACAP) has neuroprotective effects upon the developing rat retina. PACAP38 prevented anisomycin-induced cell death in the neuroblastic layer (NBL) of retinal explants, and complete inhibition of induced cell death was obtained with 1 nm. A similar protective effect was observed with PACAP27 and with the specific PAC1 receptor agonist maxadilan but not with glucagon. Photoreceptor cell death induced by thapsigargin was also prevented by PACAP38. The neuroprotective effect of PACAP38 upon the NBL could be reverted by the competitive PACAP receptor antagonist PACAP6-38 and by the specific PAC1 receptor antagonist Maxd.4. Molecular and immunohistochemical analysis demonstrated PAC1 receptors, and treatment with PACAP38 induced phospho-cAMP-response element-binding protein immunoreactivity in the anisomycin-sensitive undifferentiated postmitotic cells within the NBL. PACAP38 produced an increase in cAMP but not inositol triphosphate, and treatment with the cAMP-dependent protein kinase inhibitor R(p)-cAMPS blocked the protective effect of PACAP38. The results indicate that activation of PAC1 receptors by PACAP38 modulates cell death in the developing retina through the intracellular cAMP/cAMP-dependent protein kinase pathway.  相似文献   

7.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized to pancreatic ganglia governing the parasympathetic nerves, which contribute to prandial insulin secretion. We hypothesized that this contribution involves PACAP and show here that the PACAP receptor antagonist PACAP-(6---27) (1.5 nmol/kg iv) reduces the 15-min insulin response to gastric glucose (150 mg/mouse) by 18% in anesthetized mice (P = 0.041). The reduced insulinemia was not due to inhibited release of the incretin factor glucagon-like peptide 1 (GLP-1) because PACAP-(6---27) enhanced the GLP-1 response to gastric glucose. Furthermore, the GLP-1 antagonist exendin-3-(9---39) (30 nmol/kg) exerted additive inhibitory effect on the insulin response when combined with PACAP-(6---27). The PACAP antagonism was specific because intravenous PACAP-(6---27) inhibited the insulin response to intravenous PACAP-27 plus glucose without affecting the insulin response to intravenous glucose alone (1 g/kg) or glucose together with other insulin secretagogues of potential incretin relevance of intestinal (GLP-1, gastric inhibitory polypeptide, cholecystokinin) and neural (vasoactive intestinal peptide, gastrin-releasing peptide, cholinergic agonism) origin. We conclude that PACAP contributes to the insulin response to gastric glucose in mice and suggest that PACAP is involved in the regulation of prandial insulin secretion.  相似文献   

8.
Amylin, a 37-amino acid polypeptide, is the main component of amyloid deposits in the islets of Langerhans, and has been identified in the B-cell secretory granules. We have investigated the effect of rat amylin on the insulin and glucagon release by the isolated, perfused rat pancreas. Amylin infusion at 750 nM, markedly reduced unstimulated insulin release (ca. 50%, P less than 0.025), whereas it did not modify glucagon output. At the same concentration, amylin also blocked the insulin response to 9 mM glucose (ca. 80%, P less than 0.025) without affecting the suppressor effect of glucose on glucagon release. The inhibitory effect of amylin on glucose-induced insulin secretion was confirmed by lowering the amylin concentration (500 nM) and increasing the glucose stimulus (11 mM); again, no effect of amylin on glucagon release was observed. Finally, amylin, at 500 nM, reduced the insulin response to 3.5 mM arginine (ca. 40%, P less than 0.025) without modifying the secretion of glucagon elicited by this amino acid. It can be concluded that, in the rat pancreas, the inhibitory effect of homologous amylin on unstimulated insulin secretion, as well as on the insulin responses to metabolic substrates (glucose and arginine), favours the concept of this novel peptide as a potential diabetogenic agent.  相似文献   

9.
Green BD  Irwin N  Flatt PR 《Peptides》2006,27(6):1349-1358
Pituitary adenylate cyclase-activating peptide (PACAP) is a member of the glucagon family of peptides. Like other members, most notably glucagon-like peptide-1 (GLP-1), PACAP is rapidly degraded by dipeptidylpeptidase IV (DPP IV). This study investigated how degradation by DPP IV affected the insulinotropic activity of PACAP, and whether PACAP exerted acute antihyperglycemic properties in normal or ob/ob mice. DPP IV degradation of PACAP(1-27) over 18 h led to the formation of PACAP(3-27), PACAP(5-27) and ultimately PACAP(6-27). In contrast to 1.4-1.8-fold concentration-dependent stimulation of insulin secretion by PACAP(1-27), these peptide fragments lacked insulinotropic activity. While PACAP(1-27) and PACAP(1-38) generated significant insulin responses when given alone or together with glucose in ob/ob and normal mice, they also elevated plasma glucose. These actions were eliminated following degradation of the peptide by incubation with DPP IV. The hyperglycemic effects may be explained at least partly by a potent glucagon-releasing action in ob/ob and normal mice. In conclusion, PACAP is inactivated by DPP IV and despite insulin-releasing effects, its actions on glucagon secretion and glucose homeostasis do not make it a good therapeutic tool for the treatment of type 2 diabetes.  相似文献   

10.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel hypothalamic peptide structurally related to vasoactive intestinal peptide (VIP) and glucagon like peptide-1(7-36) amide (tGLP-1) in its N-terminal portion. Therefore, their levels of insulinotropic potency were compared using an isolated rat pancreas perfusion. It was found that 0.1 nM PACAP (1-27) amide (PACAP27) significantly stimulated insulin release under a perfusate glucose concentration of 5.5 mM, whereas 1 nM PACAP27 did not under a perfusate glucose concentration of 2.8 mM. The potency was evaluated as tGLP-1 greater than PACAP27 greater than VIP. These results indicate that PACAP is a glucagon superfamily peptide which stimulates insulin release in a glucose dependent manner.  相似文献   

11.
The effect of infused acetylcholine and (2-acetyllactoyloxyethyl)-trimethylammonium hemi-1,5-naphthalenedisulfonate (aclatonium napadisilate), a new cholinergic drug . On endocrine and exocrine secretory responses was simultaneously investigated during the perfusion of isolated rat pancreases. Acetylcholine (1.1 microM) stimulated the output of pancreatic juice and amylase, and significantly elicited the production of both insulin and glucagon. Its effect on somatostatin secretion, however, was minimal. Both pancreatic juice flow and amylase output were also significantly stimulated by aclatonium napadisilate (12 microM). These stimulatory effects of aclatonium napadisilate on the exocrine pancreas were blocked by atropine (25 microM). Aclatonium napadisilate could stimulate glucagon, but could not influence insulin and somatostatin secretion. The addition of atropine had no effect on the release of insulin, glucagon, and somatostatin. These results indicate that the effects of aclatonium napadisilate is cholinergic, and that the action is muscarinic. In addition, it can be concluded that pancreatic somatostatin secretion, as well as other hormones from islet cells, is controlled by the parasympathetic nervous system.  相似文献   

12.
6 normal subjects received two times of 2 hr euglycemic glucose clamp studies (insulin infusion rate 40 mU/M2/min) one with and the other without somatostatin (SRIF) infusion (500 microgram/hr). Serum C-peptide and glucagon levels were measured during clamp to study the sensitivity of pancreatic alpha and beta cells to the suppressive effects of exogenous hyperinsulinemia during normoglycemia in normal subjects and to find whether SRIF had any modulative effects on endocrine pancreas secretion at the status of hyperinsulinemia. The results showed that in normal man the degree of suppression of pancreatic glucagon secretion by hyperinsulinemia (approximately 100 uU/ml) during euglycemic glucose clamp without SRIF infusion was less than that of C-peptide with mean value of 62 +/- 4% of basal glucagon remained at the end of clamp study; while only about 30 +/- 2% of basal C-peptide concentrations remained. But during SRIF infused glucose clamp studies (SRIF was infused from 60 to 120 min), 32 +/- 2% of mean basal C-peptide concentrations and 38 +/- 6% of mean basal glucagon concentrations left at the end of 2 hr clamp studies when serum insulin level was about 100 uU/ml. For the glucose infusion rate (M value), it was significantly greater in our normal subjects in response to insulin + SRIF as compared to insulin alone (12.0 + 0.9 vs 8.8 +/- 1.4; P less than 0.01). We concluded: during hyperinsulinemia (100 uU/ml), the sensitivity of pancreatic alpha cells to insulin seems less than that of beta cells in normal man at normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Yu R  Yi T  Xie S  Hong A 《Peptides》2008,29(8):1347-1353
Maxadilan and its truncated variant, M65, are agonist and antagonist specific, respectively, for the PAC1 receptor. PAC1 is the specific receptor for the pituitary adenylate cyclase-activating peptide (PACAP), which is not shared by vasoactive intestinal peptide (VIP). PACAP is a ubiquitous peptide of the glucagon superfamily that is involved in glucose homeostasis and regulation of insulin secretion. This study employed the recombinant maxadilan and M65 to evaluate the PAC1 receptor-mediated effects on energy metabolism using NIH mice. First, the acute effect of maxadilan-induced hyperglycemia was blocked by M65. In long-term studies, NIH mice were given daily intraperitoneal injections with maxadilan, M65, or vehicle for 21 days. Maxadilan suppressed feeding and enhanced water intake significantly for the first several days. After that period, maxadilan treatment continued to promote food and water intake. Long-term administration of maxadilan led to an increase in body weight (P<0.01), decrease in body fat (P<0.01), down-regulation of basal plasma glucose (P<0.01), upregulation of basal plasma insulin (P<0.01) and improved glucose tolerance (P<0.01) and insulin sensitivity (P<0.01). An elevation in plasma LDL (P<0.01) was also observed in the maxadilan group. However, M65 displayed no significant adverse effects on the aforementioned parameters except basal plasma glucose (P<0.05). The significant changes induced by maxadilan indicate that the PAC1 receptor plays multiple key roles in carbohydrate metabolism, lipid metabolism and energy homeostasis in mice.  相似文献   

14.
M Nakata  S Shioda  Y Oka  I Maruyama  T Yada 《Peptides》1999,20(8):943-948
Pituitary adenylate cyclase-activating polypeptide (PACAP) is localized in pancreatic nerve fibers and islets and potently augments glucose-induced insulin secretion. The present study explored a possible extra-pancreatic action of PACAP. The specific PACAP receptor (PAC1 receptor) was expressed in the rat fat tissue and 3T3-LI adipocytes. PACAP-38 (10 nM) significantly enhanced insulin-induced 2-deoxyglucose uptake by 3T3-L1 adipocytes. Insulin-stimulated phosphatidylinositol 3-kinase activity was further increased by PACAP-38, whereas the tyrosine-phosphorylation of insulin receptor beta-subunit and insulin receptor substrate-1 was unaltered by PACAP-38. These results reveal that PACAP-38 enhances insulin-induced glucose uptake, an effect probably mediated by insulin-stimulated phosphatidyl-inositol 3-kinase, and that PACAP potentiates not only insulin secretion, but also insulin action in adipocytes.  相似文献   

15.
The endocrine pancreas has emerged as a target for estrogens. The functions of pancreatic α-, β- and δ-cells are modulated by the endogenous hormone, 17β-estradiol (E2). Low physiological concentrations (100pM-1nM) of E2 rapidly decrease the activity of the ATP-sensitive potassium channel (K(ATP)) and enhance glucose-induced insulin release in β-cells in an estrogen receptor β (ERβ)-dependent manner. In addition to the insulinotropic action of ERβ, the newly described estrogen receptor, GPR30, is involved in the insulinotropic effects of high doses of E2 (100nM-5μM). The specific GPR30 agonist G1 also increases insulin secretion in β-cells. Low glucose-induced calcium oscillations and glucagon secretion are suppressed by E2. The effects on glucagon secretion may be mediated by GPR30. Somatostatin release is also decreased by E2 and G1. In this review we summarize all the data published up to date on the rapid insulinotropic effects of estrogens in the endocrine pancreas and propose a model to integrate the estrogen actions mediated through both receptors.  相似文献   

16.
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) plays a crucial role in the endocrine system. The present study aimed to investigate the effect of PACAP38 on insulin secretion and the underlying mechanism in rat pancreatic β-cells. The insulin secretion results showed that PACAP38 stimulated insulin secretion in a glucose- and dose-dependent manner. The insulinotropic effect was mediated by PAC1 receptor, but not by VPAC1 and VPAC2 receptors. Inhibition of adenylyl cyclase and protein kinase A suppressed PACAP38-augmented insulin secretion. Glucose-regulated insulin secretion is dependent on a series of electrophysiological activities. Current-clamp technology suggested that PACAP38 prolonged action potential duration. Voltage-clamp recordings revealed that PACAP38 blocked voltage-dependent potassium currents, and this effect was reversed by inhibition of PAC1 receptor, adenylyl cyclase, or protein kinase A. Activation of Ca2+ channels by PACAP38 was also observed, which could be antagonized by the PAC1 receptor antagonist. In addition, calcium-imaging analysis indicated that PACAP38 increased intracellular Ca2+ concentration, which was decreased by PAC1 receptor antagonist. These findings demonstrate that PACAP38 stimulates glucose-induced insulin secretion mainly by acting on PAC1 receptor, inhibiting voltage-dependent potassium channels, activating Ca2+ channels and increasing intracellular Ca2+ concentration. Further, PACAP blocks voltage-dependent potassium currents via the adenylyl cyclase/protein kinase A signaling pathway.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) have opposite actions on the gallbladder; PACAP induces contraction, whereas VIP induces relaxation. Here, we have attempted to identify key residues responsible for their interactions with PACAP (PAC1) and VIP (VPAC) receptors in the guinea pig gallbladder. We synthesized PACAP-27/VIP hybrid peptides and compared their actions on isolated guinea pig gallbladder smooth muscle strips using isotonic transducers. [Ala4]- and [Val5]PACAP-27 were more potent than PACAP-27 in stimulating the gallbladder. In contrast, [Ala4, Val5]- and [Ala4, Val5, Asn9]PACAP-27 induced relaxation similarly to VIP. [Asn9]-, [Thr11]-, or [Leu13]PACAP-27 had 20-70% contractile activity of PACAP-27, whereas [Asn24,Ser25,Ile26]PACAP-27 showed no change in the activity. All VIP analogs, including [Gly4,Ile5,Ser9]VIP, induced relaxation. In the presence of a PAC1 receptor antagonist, PACAP(6-38), the contractile response to PACAP-27 was inhibited and relaxation became evident. RT-PCR analysis revealed abundant expressions of PAC1 receptor, "hop" splice variant, and VPAC1 and VPAC2 receptor mRNAs in the guinea pig gallbladder. In conclusion, PACAP-27 induces contraction of the gallbladder via PAC1/hop receptors. Gly4 and Ile5 are the key NH2-terminal residues of PACAP-27 that distinguish PAC1/hop receptors from VPAC1/VPAC2 receptors. However, both the NH2-terminal and alpha-helical regions of PACAP-27 are required for initiating gallbladder contraction.  相似文献   

18.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.  相似文献   

19.
垂体腺苷酸环化酶激活肽的研究概况   总被引:1,自引:0,他引:1  
垂体腺苷酸环化酶激活肽(PACAP)及其受体存在于许多动物的下丘脑和垂体中,而且在肾上腺、睾丸、卵巢、肝脏、肾脏、胰腺、松果腺、心脏、脊椎、神经节、呼吸系统和消化系统等组织或系统中也存在,其中肾上腺含量最高.在这些组织或系统中,通过Ca2+、Na+、腺苷酸环化酶或磷酸肌醇等作用通路,PACAP发挥神经递质/调质、或神经营养因子等生物学功能.  相似文献   

20.
Galanin, a 29 amino acid neuropeptide, was recently isolated from pig intestine. We studied the localization, nature and effect of galanin in pig pancreas. Galanin immunoreactive nerve fibers were regularly found in the pancreas. A peptide chromatographically similar to synthetic galanin was identified in pancreas extracts. The effect of galanin on the endocrine and exocrine secretion was studied in isolated pancreases, perfused with a synthetic medium containing 3.5, 5 or 8 mmol/l glucose and synthetic galanin (10(-10)-10(-8) mol/l). There was no effect on the basal exocrine secretion. The output of insulin, glucagon, somatostatin and pancreatic polypeptide (PP) was measured in the effluent. There was no effect on PP secretion. At a perfusate glucose concentration of 5 mmol/l, galanin at 10(-9) mol/l increased insulin secretion by 55 +/- 14% (mean +/- S.E.M., n = 5) of basal secretion, and at 10(-8) mol/l by 58 +/- 27% (n = 6). At 8 mmol/l glucose, insulin secretion increased by 25 +/- 10% (n = 6) and 62 +/- 17% (n = 8). At 5 mmol/l glucose glucagon secretion was increased by 15 +/- 3% (n = 5) by galanin at 10(-9) mol/l and by 29 +/- 11% (n = 5) by galanin at 10(-8) mol/l, and at 8 mmol/l glucose by 66 +/- 27% and 41 +/- 25%. Somatostatin secretion was inhibited to 72 +/- 2% (n = 5) of basal secretion by galanin at 10(-9) mol/l and to 65 +/- 7% (n = 7) at galanin at 10(-8) mol/l, both at 5 mmol/l glucose. At 8 mmol/l the figures were 83 +/- 6% and 70 +/- 10%. Insulin secretion in response to square wave increases in glucose concentration from 3.5 to 11 mmol/l (n = 5) increased 2-fold during simultaneous perfusion with galanin (10(-8) mol/l).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号