首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative alpha-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with alpha-1,2- and alpha-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first alpha-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

2.
Kitajima T  Chiba Y  Jigami Y 《The FEBS journal》2006,273(22):5074-5085
In yeast, the N-linked oligosaccharide modification in the Golgi apparatus is initiated by alpha1,6-mannosyltransferase (encoded by the OCH1 gene) with the addition of mannose to the Man(8)GlcNAc(2) or Man(9)GlcNAc(2) endoplasmic reticulum intermediates. In order to characterize its enzymatic properties, the soluble form of the recombinant Och1p was expressed in the methylotrophic yeast Pichia pastoris as a secreted protein, after truncation of its transmembrane region and fusion with myc and histidine tags at the C-terminus, and purified using a metal chelating column. The enzymatic reaction was performed using various kinds of pyridylaminated (PA) sugar chains as acceptor, and the products were separated by high performance liquid chromatography. The recombinant Och1p efficiently transferred a mannose to Man(8)GlcNAc(2)-PA and Man(9)GlcNAc(2)-PA acceptors, while Man(5)GlcNAc(2)-PA, which completely lacks alpha1,2-linked mannose residues, was not used as an acceptor. At high enzyme concentrations, a novel product was detected by HPLC. Analysis of the product revealed that a second mannose was attached at the 6-O-position of alpha1,3-linked mannose branching from the alpha1,6-linked mannose that is attached to beta1,4-linked mannose of Man(10)GlcNAc(2)-PA produced by the original activity of Och1p. Our results indicate that Och1p has the potential to transfer two mannoses from GDP-mannose, and strictly recognizes the overall structure of high mannose type oligosaccharide.  相似文献   

3.
Fractionation of a crude extract from Saccharomyces cerevisiae X-2180 on Sepharose 6B in the presence of 0.5% Triton X-100 resolves two enzyme fractions containing alpha-mannosidase activity. Fraction I which is excluded from the gel contains alpha-mannosidase activity toward both p-nitrophenyl-alpha-D-mannopyranoside and Man9GlcNAc oligosaccharide as substrates, whereas Fraction II which is included in the gel contains only oligosaccharide alpha-mannosidase activity. The latter enzyme is very specific and removes a single mannose residue from Man9GlcNAc, whereas the alpha-mannosidase activity of Fraction I removes several mannose residues from Man9GlcNAc oligosaccharide. High resolution 1H NMR analysis of the Man8GlcNAc formed from Man9GlcNAc in the presence of the alpha-mannosidase of Fraction II showed only a single isomer with the following structure: (see formula; see text) This specific enzyme is most probably involved in processing of oligosaccharide during biosynthesis of mannoproteins. The mannose analog of 1-deoxynojirimycin (50-500 microM), dideoxy-1,5-imino-D-mannitol, inhibits the oligosaccharide alpha-mannosidase activities of Fractions I and II to about the same extent, but has no effect on the nonspecific alpha-mannosidase which acts on p-nitrophenyl-alpha-D-mannopyranoside.  相似文献   

4.
Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1,6-Man backbone for elongation with additional alpha 1,6-linked mannose residues, according to the following scheme: (formula, see text).  相似文献   

5.
T Szumilo  G P Kaushal  A D Elbein 《Biochemistry》1987,26(17):5498-5505
The presence of an N-acetylglucosaminyltransferase (GlcNAc-transferase) capable of adding a GlcNAc residue to GlcNAcMan3GlcNAc was demonstrated in mung bean seedlings. This enzyme was purified about 3400-fold by using (diethylaminoethyl)cellulose and phosphocellulose chromatographies and chromatography on Concanavalin A-Sepharose. The transferase was assayed by following the change in the migration of the [3H]mannose-labeled GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc on Bio-Gel P-4, or by incorporation of [3H]GlcNAc from UDP-[3H]GlcNAc into a neutral product, (GlcNAc)2Man3GlcNAc. Thus, the purified enzyme catalyzed the addition of a GlcNAc to that mannose linked in alpha 1,6 linkage to the beta-linked mannose. GlcNAc beta 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc was an excellent acceptor while Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, Man alpha 1,6(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta 1,4GlcNAc, and Man alpha 1,6(Man apha 1,3)Man alpha 1,6[GlcNAcMan alpha 1,3]Man beta 1,4GlcNAc were not acceptors. Methylation analysis and enzymatic digestions showed that both terminal GlcNAc residues on (GlcNAc)2Man3GlcNAc were attached to the mannoses in beta 1,2 linkages. The GlcNAc transferase had an almost absolute requirement for divalent cation, with Mn2+ being best at 2-3 mM. Mn2+ could not be replaced by Mg2+ or Ca2+, but Cd2+ showed some activity. The enzyme was also markedly stimulated by the presence of detergent and showed optimum activity at 0.15% Triton X-100. The Km for UDP-GlcNAc was found to be 18 microM and that for GlcNAcMan3GlcNAc about 16 microM.  相似文献   

6.
The fission yeast Schizosaccharomyces pombe attaches an outer chain containing mannose and galactose to the N-linked oligosaccharides on many of its glycoproteins. We identified an S. pombe och1 mutant that did not synthesize the outer chains on acid phosphatase. The S. pombe och1(+) gene was a functional homolog of Saccharomyces cerevisiae OCH1, and its gene product (SpOch1p) incorporated alpha-1,6-linked mannose into pyridylaminated Man(9)GlcNAc(2), indicating that och1(+) encodes an alpha-1,6-mannosyltransferase. Our results indicate that SpOch1p is a key enzyme of outer chain elongation. The substrate specificity of SpOch1p was different from that of S. cerevisiae OCH1 gene product (ScOch1p), suggesting that SpOch1p may have a wider substrate specificity than that of ScOch1p.  相似文献   

7.
Two GDP-mannose-dependent mannosyltransferase activities (designated M1MT-I and M2MT-I) from Triton X-100 extracts of Saccharomyces cerevisiae mnn1 microsomes were separated by concanavalin A lectin chromatography and partially purified. The two transferases were distinguished by differences in concanavalin A affinity and in carbohydrate acceptor specificity. Analyses of the reaction products indicate that both enzymes are alpha 1,2-mannosyltransferases. M1MT-I utilizes mannose or methyl-alpha-mannoside as acceptor while M2MT-I catalyzes the transfer of mannose from GDP-mannose to unsubstituted nonreducing alpha 1,6-linked mannose residues in the acceptor molecule. M2MT-I activity correlates with the presence of a single alpha 1,2-linked mannose residue at the nonreducing terminus of mnn2mnn9 and mnn2mnn10 outer chain oligosaccharides, and the enzyme may be involved in regulating outer chain elongation.  相似文献   

8.
Characterization of a novel alpha-D-mannosidase from rat brain microsomes   总被引:4,自引:0,他引:4  
A new alpha-D-mannosidase has been identified in rat brain microsomes. The enzyme was purified 70-100-fold over the microsomal fraction by solubilization with Triton X-100, followed by ion exchange, concanavalin A-Sepharose, and hydroxylapatite chromatography. The purified enzyme is very active towards mannose-containing oligosaccharides and has a pH optimum of 6.0. Unlike rat liver endoplasmic reticulum alpha-D-mannosidase and both Golgi mannosidases IA and IB, which have substantial activity only towards alpha 1,2-linked mannosyl residues, the brain enzyme readily cleaves alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannosyl residues present in high mannose oligosaccharides. The brain enzyme is also different from liver Golgi mannosidase II in that it hydrolyzes (Man)5GlcNAc and (Man)4GlcNAc without their prior N-acetylglucosaminylation. Moreover, the facts that the ability of the enzyme to cleave GlcNAc(Man)5GlcNAc, the biological substrate for Golgi mannosidase II, is not inhibited by swainsonine, and that p-nitrophenyl alpha-D-mannoside is a poor substrate provide further evidence for major differences between the brain enzyme and mannosidase II. Inactivation studies and the co-purification of activities towards various substrates suggest that a single enzyme is responsible for all the activities found. In view of these results, it seems possible that, in rat brain, a single mannosidase cleaves asparagine-linked high mannose oligosaccharide to form the core Man3GlcNAc2 moiety, which would then be modified by various glycosyl transferases to form complex type glycoproteins.  相似文献   

9.
Saccharomyces SUC2 invertase, secreted by the methylotrophic yeast Pichia pastoris and purified to homogeneity from the growth medium by DE-52 chromatography, appeared on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a diffuse ladder of species at 85-90 kDa, while the secreted Saccharomyces form migrated as a broad band from 100 to 150 kDa. Endo-beta-N-acetylglucosaminidase H released the Pichia invertase carbohydrate generating a 60-kDa protein with residual Asn-linked GlcNAcs and oligosaccharides separated on Bio-Gel P-4 into Man8-11GlcNAc. Nearly 75% of the oligosaccharides were equally distributed between Man8,9GlcNAc, while 17% were Man10GlcNAc and 8% were Man11GlcNAc. Oligosaccharide pools were analyzed for homogeneity by high-pH anion-exchange chromatography, and structures were assigned using 500 MHz one- and two-dimensional 1H NMR spectroscopy. Pichia Man8GlcNAc was the same isomer as found in Saccharomyces, which arises by removing the alpha 1,2-linked terminal mannose from the middle arm of the lipid-oligosaccharide Man9GlcNAc (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666). The Man9GlcNAc pool was 5% lipid-oligosaccharide precursor and 95% Man8GlcNAc isomer with a terminal alpha 1,6-linked mannose on the lower-arm alpha 1,3-core-linked residue (Hernández, L. M., Ballou, L., Alvarado, E., Gillece-Castro, B. L., Burlingame, A. L., and Ballou, C. E. (1989) J. Biol. Chem. 264, 11849-11856). An alpha 1,2-linked mannose on the new alpha 1,6-linked branch in Man9GlcNAc provided 80% of the Man10GlcNAc, which is the structure on Saccharomyces invertase (Trimble, R. B., and Atkinson, P. H. (1986) J. Biol. Chem. 261, 9815-9824). A minor Man10GlcNAc (12%) and the principal Man11GlcNAc (82%) were the major Man9,10GlcNAc with novel alpha 1,2-linked mannoses on the preexisting alpha 1,2-linked termini. Although Pichia glycans did not have terminal alpha 1,3-linked mannoses as found on Saccharomyces core oligosaccharides, over 60% of the structures were isometric configurations unique to lower eukaryotes.  相似文献   

10.
The kinetics of the binding of mannooligosaccharides to the heterodimeric lectin from garlic bulbs was studied using surface plasmon resonance. The interaction of the bound lectin immobilized on the sensor chip with a selected group of high mannose oligosaccharides was monitored in real time with the change in response units. This investigation corroborates our earlier study about the special preference of garlic lectin for terminal alpha-1,2-linked mannose residues. An increase in binding propensity can be directly correlated to the addition of alpha-1,2-linked mannose to the mannooligosaccharide at its nonreducing end. Mannononase glycopeptide (Man9GlcNAc2Asn), the highest oligomer studied, exhibited the greatest binding affinity (Ka = 1.2 x 10(6) m(-1) at 25 degrees C). An analysis of these data reveals that the alpha-1,2-linked terminal mannose on the alpha-1,6 arm is the critical determinant in the recognition of mannooligosaccharides by the lectin. The association (k1) and dissociation rate constants (k(-1)) for the binding of Man9GlcNAc2Asn to Allium sativum agglutinin I are 6.1 x 10(4) m(-1) s(-1) and 4.9 x 10(-2) s(-1), respectively, at 25 degrees C. Whereas k1 increases progressively from Man3 to Man7 derivatives, and more dramatically so for Man8 and Man9 derivatives, k(-1) decreases relatively much less gradually from Man3 to Man9 structures. An unprecedented increase in the association rate constant for interaction with Allium sativum agglutinin I with the structure of the oligosaccharide ligand constitutes a significant finding in protein-sugar recognition.  相似文献   

11.
In order to study the substrate specificities of the enzymes implicated in the catabolism of oligomannosidic-type glycans, the oligosaccharides Man9GlcNAc and Man5GlcNAc were incubated with rat liver lysosomal and cytosolic alpha-D-mannosidases and the hydrolysis products were characterized by 400 MHz 1H-NMR spectroscopy. Although they both occur in an ordered way, the two catabolic pathways are quite different. The lysomal pathway is realized in two stages: the first leads from Man9GlcNAc to Man5GlcNAc by preferential cleavage of the four alpha-1,2-linked mannose residues, and the second, Zn(2+)-dependent, leads from Man5GlcNAc to Man (beta 1-4) GlcN Ac by hydrolysis of alpha-1, 3- and alpha-1,6-linked residues. On the contrary, the cytosolic pattern leads by a pathway quite different to a unique hexasaccharide Man5GlcNAc which has, curiously, the same structure as one of the polyprenolic intermediates occurring in the cytosol during the biosynthesis of N-glycosylprotein glycans: Man (alpha 1-2) Man (alpha 1-2) Man (alpha 1-3) [Man (alpha 1-6)] Man (beta 1-4) GlcN Ac (beta 1-4) GlcNAc alpha 1-P-P-Dol.  相似文献   

12.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

13.
The alpha-1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 (ScOCH1) is responsible for the outer chain initiation of N-linked oligosaccharides. To identify the genes involved in the first step of outer chain biosynthesis in the methylotrophic yeast Hansenula polymorpha, we undertook the functional analysis of three H. polymorpha genes, HpHOC1, HpOCH1, and HpOCR1, that belong to the OCH1 family containing seven members with significant sequence identities to ScOCH1. The deletions of these H. polymorpha genes individually resulted in several phenotypes suggestive of cell wall defects. Whereas the deletion of HpHOC1 (Hphoc1Delta) did not generate any detectable changes in N-glycosylation, the null mutant strains of HpOCH1 (Hpoch1Delta) and HpOCR1 (Hpocr1Delta) displayed a remarkable reduction in hypermannosylation. Although the apparent phenotypes of Hpocr1Delta were most similar to those of S. cerevisiae och1 mutants, the detailed structural analysis of N-glycans revealed that the major defect of Hpocr1Delta is not in the initiation step but rather in the subsequent step of outer chain elongation by alpha-1,2-mannose addition. Most interestingly, Hpocr1Delta showed a severe defect in the O-linked glycosylation of extracellular chitinase, representing HpOCR1 as a novel member of the OCH1 family implicated in both N- and O-linked glycosylation. In contrast, addition of the first alpha-1,6-mannose residue onto the core oligosaccharide Man8GlcNAc2 was completely blocked in Hpoch1Delta despite the comparable growth of its wild type under normal growth conditions. The complementation of the S. cerevisiae och1 null mutation by the expression of HpOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in Hpoch1Delta provided supportive evidence that HpOCH1 is the functional orthologue of ScOCH1. The engineered Hpoch1Delta strain with the targeted expression of Aspergillus saitoi alpha-1,2-mannosidase in the endoplasmic reticulum was shown to produce human-compatible high mannose-type Man5GlcNAc2 oligosaccharide as a major N-glycan.  相似文献   

14.
Glucosidase II was purified approximately 1700-fold to homogeneity from Triton X-100 extracts of mung bean microsomes. A single band with a molecular mass of 110 kDa was seen on sodium dodecyl sulfate gels. This band was susceptible to digestion by endoglucosaminidase H or peptide glycosidase F, and the change in mobility of the treated protein indicated the loss of one or two oligosaccharide chains. By gel filtration, the native enzyme was estimated to have a molecular mass of about 220 kDa, suggesting it was composed of two identical subunits. Glucosidase II showed a broad pH optima between 6.8 and 7.5 with reasonable activity even at 8.5, but there was almost no activity below pH 6.0. The purified enzyme could use p-nitrophenyl-alpha-D-glucopyranoside as a substrate but was also active with a number of glucose-containing high-mannose oligosaccharides. Glc2Man9GlcNAc was the best substrate while activity was significantly reduced when several mannose residues were removed, i.e. Glc2Man7-GlcNAc. The rate of activity was lowest with Glc1Man9GlcNAc, demonstrating that the innermost glucose is released the slowest. Evidence that the enzyme is specific for alpha 1,3-glucosidic linkages is shown by the fact that its activity on Glc2Man9GlcNAc was inhibited by nigerose, an alpha 1,3-linked glucose disaccharide, but not by alpha 1,2 (kojibiose)-, alpha 1,4(maltose)-, or alpha 1,6 (isomaltose)-linked glucose disaccharides. Glucosidase II was strongly inhibited by the glucosidase processing inhibitors deoxynojirimycin and 2,6-dideoxy-2,6-imino-7-O-(beta-D- glucopyranosyl)-D-glycero-L-guloheptitol, but less strongly by castanospermine and not at all by australine. Polyclonal antibodies prepared against the mung bean glucosidase II reacted with a 95-kDa protein from suspension-cultured soybean cells that also showed glucosidase II activity. Soybean cells were labeled with either [2-3H]mannose or [6-3H]galactose, and the glucosidase II was isolated by immunoprecipitation. Essentially all of the radioactive mannose was released from the protein by treatment with endoglucosaminidase H. The labeled oligosaccharide(s) released by endoglucosaminidase H was isolated and characterized by gel filtration and by treatment with various enzymes. The major oligosaccharide chain on the soybean glucosidase II appeared to be a Man9(GlcNAc)2 with small amounts of Glc1Man9(GlcNAc)2.  相似文献   

15.
The initial lipid-linked oligosaccharide Glc(3)Man(9)GlcNAc(2)-dolichyl pyrophosphate (Dol-PP) for N-glycan is synthesized and assembled at the membrane of the endoplasmic reticulum (ER) and subsequently transferred to a nascent polypeptide by the oligosaccharide transferase complex. We have identified an ALG3 homolog (HpALG3) coding for a dolichyl-phosphate-mannose dependent alpha-1,3-mannosyltransferase in the methylotrophic yeast Hansenula polymorpha. The detailed analysis of glycan structure by linkage-specific mannosidase digestion showed that HpALG3 is responsible for the conversion of Man5GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP, the first step to attach a mannose to the lipid-linked oligosaccharide in the ER. The N-glycosylation pathway of H. polymorpha has been remodeled by deleting the HpALG3 gene in the Hpoch1 null mutant strain blocked in the yeast-specific outer mannose chain synthesis and by introducing an ER-targeted Aspergillus saitoi alpha-1,2-mannosidase gene. This glycoengineered H. polymorpha strain produced glycoproteins mainly containing trimannosyl core N-glycan (Man(3)GlcNAc(2)), which is the common core backbone of various human-type N-glycans. The results demonstrate the high potential of H. polymorpha to be developed as an efficient expression system for the production of glycoproteins with humanized glycans.  相似文献   

16.
Studies in intact cells have shown the following processing reaction to occur during Asn-linked oligosaccharide biosynthesis (M, mannose; GlcNAc, N-acetylglucosamine): Formula: (See Text) We have identified a rat liver Golgi enzyme which catalyzes this reaction in vitro. This alpha-mannosidase has been purified 3,000 to 6,000-fold by subcellular fractionation, Triton X-100 solubilization, and ion exchange and hydroxylapatite chromatography. The purified enzyme has a pH optimum between 6.0 and 6.5 and a Km between 17 and 100 microM for a processing intermediate. The enzyme shows specificity for alpha 1,2-linked mannose residues. Structural analysis of the in vitro reaction products reveal that specific intermediates are formed in the conversion of the (Man)9GlcNAc oligosaccharide to the (Man)5GlcNAc oligosaccharide. Heat inactivation studies are consistent with the possibility that one enzyme activity is responsible for this conversion. The alpha 1,2-specific mannosidase described here appears to be distinct from two other rat liver Golgi alpha-mannosidase activities based on differential substrate specificity, inhibitor susceptibility, and detergent extractability.  相似文献   

17.
Purification and properties of glucosidase I from mung bean seedlings   总被引:3,自引:0,他引:3  
The microsomal enzyme fraction from mung bean seedlings was found to contain glucosidase activity capable of releasing [3H]glucose from the glucose-labeled Glc3Man9GlcNAc. The enzymatic activity could be released in a soluble form by treating the microsomal particles with 1.5% Triton X-100. When the solubilized enzyme fraction was chromatographed on DE-52, it was possible to resolve glucosidase I activity (measured by the release of [3H]glucose from Glc3Man9GlcNAc) from glucosidase II (measured by release of [3H]glucose from Glc2Man9GlcNAc). The glucosidase I was purified about 200-fold by chromatography on hydroxylapatite, Sephadex G-200, dextran-Sepharose, and concanavalin A-Sepharose. The purified enzyme was free of glucosidase II and aryl-glucosidase activities. Only a single glucose residue could be released from the Glc3Man9GlcNAc by this purified enzyme and the other product was the Glc2Man9GlcNAc. Furthermore, this enzyme was inhibited in a dose-dependent manner by kojibiose, an alpha-1,2-linked glucose disaccharide, but not by other alpha-linked glucose disaccharides. These data indicate that this glucosidase is a specific alpha-1,2-glucosidase. The pH optimum for the glucosidase I was about 6.3 to 6.5, and no requirements for divalent cations were observed. The enzyme was inhibited strongly by the glucosidase processing inhibitors, castanospermine and deoxynojirimycin, and less strongly by the plant pyrrolidine alkaloid, 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine. However, the enzyme was not inhibited by the mannosidase processing inhibitors, swainsonine, deoxymannojirimycin or 1,4-dideoxy-1,4-imino-D-mannitol. The stability of the enzyme under various conditions and other properties of the enzyme were determined.  相似文献   

18.
Inhibitors of the biosynthesis and processing of N-linked oligosaccharides   总被引:15,自引:0,他引:15  
A number of glycoproteins have oligosaccharides linked to protein in a GlcNAc----asparagine bond. These oligosaccharides may be either of the complex, the high-mannose or the hybrid structure. Each type of oligosaccharides is initially biosynthesized via lipid-linked oligosaccharides to form a Glc3Man9GlcNAc2-pyrophosphoryl-dolichol and transfer of this oligosaccharide to protein. The oligosaccharide portion is then processed, first of all by removal of all three glucose residues to give a Man9GlcNAc2-protein. This structure may be the immediate precursor to the high-mannose structure or it may be further processed by the removal of a number of mannose residues. Initially four alpha 1,2-linked mannoses are removed to give a Man5 - GlcNAc2 -protein which is then lengthened by the addition of a GlcNAc residue. This new structure, the GlcNAc- Man5 - GlcNAc2 -protein, is the substrate for mannosidase II which removes the alpha 1,3- and alpha 1,6-linked mannoses . Then the other sugars, GlcNAc, galactose, and sialic acid, are added sequentially to give the complex types of glycoproteins. A number of inhibitors have been identified that interfere with glycoprotein biosynthesis, processing, or transport. Some of these inhibitors have been valuable tools to study the reaction pathways while others have been extremely useful for examining the role of carbohydrate in glycoprotein function. For example, tunicamycin and its analogs prevent protein glycosylation by inhibiting the first step in the lipid-linked pathway, i.e., the formation of Glc NAc-pyrophosphoryl-dolichol. These antibiotics have been widely used in a number of functional studies. Another antibiotic that inhibits the lipid-linked saccharide pathway is amphomycin, which blocks the formation of dolichyl-phosphoryl-mannose. In vitro, this antibiotic gives rise to a Man5GlcNAc2 -pyrophosphoryl-dolichol from GDP-[14C]mannose, indicating that the first five mannose residues come directly from GDP-mannose rather than from dolichyl-phosphoryl-mannose. Other antibodies that have been shown to act at the lipid-level are diumycin , tsushimycin , tridecaptin, and flavomycin. In addition to these types of compounds, a number of sugar analogs such as 2-deoxyglucose, fluoroglucose , glucosamine, etc. have been utilized in some interesting experiments. Several compounds have been shown to inhibit glycoprotein processing. One of these, the alkaloid swainsonine , inhibits mannosidase II that removes alpha-1,3 and alpha-1,6 mannose residues from the GlcNAc- Man5GlcNAc2 -peptide. Thus, in cultured cells or in enveloped viruses, swainsonine causes the formation of a hybrid structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Mannosidase II was purified from mung bean seedlings to apparent homogeneity by using a combination of techniques including DEAE-cellulose and hydroxyapatite chromatography, gel filtration, lectin affinity chromatography, and preparative gel electrophoresis. The release of radioactive mannose from GlcNAc[3H]Man5GlcNAc was linear with time and protein concentration with the purified protein, did not show any metal ion requirement, and had a pH optimum of 6.0. The purified enzyme showed a single band on SDS gels that migrated with the Mr 125K standard. The enzyme was very active on GlcNAcMan5GlcNAc but had no activity toward Man5GlcNAc, Man9GlcNAc, Glc3Man9GlcNAc, or other high-mannose oligosaccharides. It did show slight activity toward Man3GlcNAc. The first product of the reaction of enzyme with GlcNAcMan5GlcNAc, i.e., GlcNAcMan4GlcNAc, was isolated by gel filtration and subjected to digestion with endoglucosaminidase H to determine which mannose residue had been removed. This GlcNAcMan4GlcNAc was about 60% susceptible to Endo H indicating that the mannosidase II preferred to remove the alpha 1,6-linked mannose first, but 40% of the time removed the alpha 1,3-linked mannose first. The final product of the reaction, GlcNAcMan3GlcNAc, was characterized by gel filtration and various enzymatic digestions. Mannosidase II was very strongly inhibited by swainsonine and less strongly by 1,4-dideoxy-1,4-imino-D-mannitol. It was not inhibited by deoxymannojirimycin.  相似文献   

20.
Cipollo JF  Trimble RB 《Glycobiology》2002,12(11):749-762
N-glycosylation in nearly all eukaryotes proceeds in the endoplasmic reticulum (ER) by transfer of the precursor Glc(3)Man(9)GlcNAc(2) from dolichyl pyrophosphate (PP-Dol) to consensus Asn residues in nascent proteins. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide lipid properly, and the alg12 mutant accumulates a Man(7)GlcNAc(2)-PP-Dol intermediate. We show that the Man(7)GlcNAc(2) released from alg12Delta-secreted invertase is Manalpha1,2Manalpha1,2Manalpha1,3(Manalpha1,2Manalpha1,3Manalpha1,6)-Manbeta1,4-GlcNAcbeta1-4GlcNAcalpha/beta, confirming that the Man(7)GlcNAc(2) is the product of the middle-arm terminal alpha1,2-mannoslytransferase encoded by the ALG9 gene. Although the ER glucose addition and trimming events are similar in alg12Delta and wild-type cells, the central-arm alpha1,2-linked Man residue normally removed in the ER by Mns1p persists in the alg12Delta background. This confirms in vivo earlier in vitro experiments showing that the upper-arm Manalpha1,2Manalpha1,6-disaccharide moiety, missing in alg12Delta Man(7)GlcNAc(2), is recognized and required by Mns1p for optimum mannosidase activity. The presence of this Man influences downstream glycan processing by reducing the efficiency of Ochlp, the cis-Golgi alpha1,6-mannosyltransferase responsible for initiating outer-chain mannan synthesis, leading to hypoglycosylation of external invertase and vacuolar protease A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号