首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 93 毫秒
1.
不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响   总被引:40,自引:0,他引:40  
袁颖红  李辉信  黄欠如  胡锋  潘根兴 《生态学报》2004,24(12):2961-2966
在田间定位试验区 ,研究了不同施肥处理对表层红壤性水稻土微团聚体组成以及土壤有机碳在各级微团聚体中分布和赋存的影响。结果表明 ,红壤性水稻土中 0 .0 2~ 0 .0 5 mm微团聚体所占比例最大 ,达 4 0 % ;其次是 0 .0 0 2~ 0 .0 2 mm和 0 .0 5~0 .1mm的微团聚体 ;>0 .2 mm微团聚体占的比例最小。长期施用无机肥 (NPK)、有机肥 (猪粪 紫云英绿肥 ) (OM)、无机肥与有机肥配施 (NPKM) ,能显著增加 0 .0 0 2~ 0 .0 2 mm微团聚体的含量而降低 <0 .0 0 2 m m微团聚体的含量。土壤有机碳含量与0 .0 0 2~ 0 .0 2 mm微团聚体含量之间呈显著正相关关系 ;而与 <0 .0 0 2 mm微团聚体含量呈显著负相关关系。各级微团聚体有机碳含量从高到低顺序为 :>0 .2 mm,0 .1~ 0 .2 mm,<0 .0 0 2 m m,0 .0 5~ 0 .1m m,0 .0 0 2~ 0 .0 2 mm,0 .0 2~ 0 .0 5 m m。 OM、NPKM处理能显著增加 >0 .0 0 2 mm各级微团聚体有机碳的赋存量 ,新增加的有机碳主要向微团聚体 0 .1~ 0 .0 5 m m,0 .0 5~ 0 .0 2 mm和 0 .0 2~ 0 .0 0 2 mm富集 ,它们是土壤有机碳的主要载体。 3种施肥处理对提高土壤有机碳赋存效果高低顺序为 :NPKM>OM>NPK。  相似文献   

2.
通过田间定位试验探讨了不同生物质炭添加量对红壤性水稻土理化性质、重金属有效性和土壤质量的影响。生物质炭于2017年水稻种植前一次性添加于耕作层(0~17cm),分别设置5个不同处理:CK:0 t·hm-2,A10:10 t·hm-2,A20:20 t·hm-2,A30:30t·hm-2和A40:40 t·hm-2,经种植两季水稻后于2018年9月采集耕作层(0~17 cm)和犁底层(17~29 cm)土壤,计算土壤质量指数(SQI),评价土壤质量。结果表明:在耕作层(0~17 cm)和犁底层(17~29 cm),随着生物质炭添加量的增加,土壤容重逐渐降低;土壤孔隙度、pH值、有机质和可溶性有机碳含量增加,铵态氮和有效磷分别在添加量为20和30 t·hm-2时达到最大值;土壤中脲酶、过氧化氢酶和蔗糖酶的活性降低;生物质炭能够降低有效态Cd、As和Pb的含量,在生物质炭添加量为40 t·hm-2时最低;在土壤耕作层(0~17cm),有效态...  相似文献   

3.
长期施肥对红壤性水稻土有机氮组分的影响   总被引:15,自引:0,他引:15  
通过16年的田间定位试验,研究了长期不同施肥模式对红壤性水稻土有机氮组分的影响.结果表明:长期化肥处理对土壤各氮素含量的作用不明显;有机物料循环特别是有机肥和化肥配施显著提高了土壤矿质氮和有机氮含量,提高幅度分别为55.2%和38.8%.有机物料循环处理显著提高了酸解性氮组分,其对土壤铵态氮、氨基糖氮和未知氮含量的提高幅度分别为36.5%、68.4%和73.9%;有机物料与化肥配施后,氨基酸氮含量也显著提高,提高幅度达71.1%,但是降低了未知氮含量,降低幅度为34.5%.此外,各施肥处理土壤累积矿化氮量均随培养时间的延长呈增加趋势,有机物循环或配施化肥处理土壤矿化氮量均高于单施化肥处理.  相似文献   

4.
1999年以不同施肥制度对红壤稻田系统生产力和土壤环境影响的长期定位试验的为依托,比较研究了9a定位试验后.不施肥、单施无机肥、有机物循环和有机天机结合施肥对红壤稻田生态系统土壤供氮能力、水稻吸氮特性和水稻生产的影响。结果表明:红壤稻田系统长期不施肥(CK)土壤速效氯含量低,最高为16.7mg/kg,平均为14.2mg/kg,水稻累积吸收氮量较少,早稻为32,84kg/hm^2,晚稻为59.79kg/hm^2,系统生产力低.早稻生物量为3887kg/hm^2。稻谷产量为2180kg/hm^2,晚稻生物量为7164kg/hm^2,稻谷产:量为3719kg/hm^2;施用N肥可以改善土壤供氯状况。提高土壤速效氯含量,且N、NP、NK、NPK处理间没有显著差异.土壤速效氮含量最大可达到29.7mg/kg,平均为21.4mg/kg,而水稻累积吸收氯量与系统生产力随着NPK配合程度的增加而提高,NPK处理的早稻累积吸收氮量、生物量和稻谷产量分别比CK处理增加122.6%、87.1%和65.4%,晚稻分别增加85.O%、48.2%和46.O%;系统内有机物循环利用(C)水稻各生育期土壤速效氯含量显著提高.最高为30.2mg/kg,平均为20.8mg/kg,水稻累积吸收氮量早、晚稻分别比CK增加111.1%和48.9%,早稻生物量与稻谷产量显分别比CK高85.6%和55.2%,晚稻分别高28.9%和35.2%;有机无机结合施肥土壤速效氮含量最大为43.1mg/kg.平均为29.1mg/kg,且N C、NP C和NPK C处理间没有显著差异,但水稻累积吸收氮量和系统生产力有随着有机肥与NPK配合程度增加而提高的趋势。  相似文献   

5.
长期施肥下红壤性水稻土有机碳储量变化特   总被引:1,自引:0,他引:1  
黄晶  张杨珠  高菊生  张文菊  刘淑军   《生态学杂志》2015,26(11):3373-3380
研究了1982—2012年长期不同施肥下红壤性水稻土土壤有机碳含量变化、固碳趋势及外源碳输入对土壤固碳的贡献.结果表明: 施肥能提高土壤有机碳含量,连续30年不同施肥后,各施肥处理土壤有机碳含量趋于稳定,有机无机配施的土壤有机碳含量为21.02~21.24 g·kg-1,增加速率为0.41~0.59 g·kg-1·a-1,单施化肥的土壤有机碳含量为15.48 g·kg-1.各有机无机肥配施处理土壤的平均有机碳储量为43.61~48.43 t C·hm-2,历年平均土壤有机碳储量显著大于单施化肥处理.土壤固碳速率与年均投入碳量呈显著指数正相关.本试验条件下,每年需要增加外源有机碳为0.12 t C·hm-2才能维持土壤有机碳的平衡.  相似文献   

6.
分析对比了4个剖面(稻田、旱地、城墙岩群组林地、蓬莱镇组林地)Zn形态的分布特征,结果表明,稻田各形态Zn的剖面分布比旱地复杂,农地土层深厚,Zn各形态分配在层次间的变化较林地复杂.DTPA-Zn(有效态锌)在表层分配的相对较高,说明作物根系层及林木根系层缺Zn突出.对各种形态在不同剖面中的分配进行了显著性分析,结果表明,农地的碳酸盐结合态锌(3.65%)、紧结有机结合态锌(2.81%)、晶形氧化铁结合态锌(22.04%)显著大于林地(1.86%、0.84%、11.59%).  相似文献   

7.
研究湘南红壤丘陵区11种植被类型下施肥区域和未施肥区域红壤剖面(0~100 cm)pH及交换性酸的变化特征.结果表明: 施肥区域0~60 cm土层土壤的pH大小顺序为茶园<花生地<柑橘园,交换性酸含量大小为花生地≤柑橘园<茶园;种植茶树和花生后,表层(0~40 cm)相对底层(60~100 cm)均产生酸化,pH分别降低0.55和0.17,而种植柑橘后,土层间无显著差异.未施肥区域中,植被恢复区0~40 cm土层pH大小为白檵木林≤湿地松林<板栗园<白茅草地,交换性酸含量大小为白茅草地<板栗园<白檵木林≤湿地松林;天然林区0~20 cm土层中次生林和油茶林的pH均显著低于马尾松林0.34和0.20个单位,马尾松林和次生林交换性酸含量显著低于油茶林.与裸地相比,未施肥区域除白茅草地外,其他植被类型均加速了表层土壤酸化,其中天然次生林酸化最严重,pH降低0.52;未施肥区域除天然次生林外,其他植被类型均提高了深层土壤pH,其中白茅草地提升效果最显著,pH升高0.43.无论施肥区域还是未施肥区域,整体上随着土层深度的增加,植被类型或施肥对土壤酸度的影响越来越小.  相似文献   

8.
利用自1981年开始的红壤性水稻土长期定位试验,对耕层土壤不同有机碳组分进行分析,以探究不同地下水位(低水位80 cm、高水位20 cm)和施肥(高量有机肥、常量有机肥、化肥)管理对红壤性水稻土有机碳组分数量和分配的影响。结果表明:各处理土壤的颗粒有机碳(POC)含量为6.29~11.77 g·kg-1,高、低水位下,各施肥处理的POC含量均随着有机肥施用量的增加而增加,但高水位下POC增加的幅度更大;高、低水位下,有机肥处理的颗粒有机碳占总有机碳的比例(fPOC/TOC、oPOC/TOC)均显著高于化肥处理,且在低水位下这种差异尤为显著;土壤中各有机碳组分均与土壤总有机碳TOC和2 mm团聚体结合态有机碳含量存在极显著正相关;在高水位或低水位区,有机肥的施用均能大幅度提高土壤TOC和POC,且在高水位下有机碳的积累更为明显。  相似文献   

9.
丘岗稻田地下水位动态及对土壤氮磷有效性的影响   总被引:2,自引:0,他引:2  
对红壤丘岗区渍潜田地下水位动态变化规律及对土壤氮磷有效性的影响进行了研究。结果表明,渍潜田地下水位的月变化具有十分明显的规律性,一般以秋冬季节(1-3月份和9-12月份)地下水位最低,而以春夏季节(4-8月份)地下水位最高,故以早稻受渍害最为严重,其原因主要是受降雨和灌溉的共同影响。根据渍潜田地下水位的变化特点不同,可将其分为地下水位和相对稳定型和非稳定型两种类型,并提出了相应的水分管理模式,地下水位的变化能明显影响土壤养分的有效性,随着地下水位的升高,土壤有效氮和磷含量下降。渍潜田土Fe-P和O-P含量也有随地下水位的升高而呈下降的趋势,其含量亦显著低于非渍潜田土壤,因而导致了土壤磷素有效性的下降。  相似文献   

10.
弄清土壤有机碳库平均驻留时间的时空变化特征对采取有效措施增强农业生态系统碳“汇”尤为关键。本研究基于历史采样信息开展新一轮土壤样品采集,进行100 d土壤呼吸培养实验,借助三库一级动力学模型拟合获得土壤活性碳库(MRTa)和缓效性碳库平均驻留时间(MRTs),揭示了2009—2019年江西东乡红壤性水稻土表层土壤MRTa和MRTs的时空变化特征及其影响因子。结果表明,东乡2019年红壤性水稻土表层土壤MRTa与MRTs均值分别为26.5 d和14.1 a,与2009年相比,未发生显著性变化。整体上,东乡南部地区活性碳库和缓效性碳库更为稳定,且东乡地区红壤性水稻土MRTa与MRTs存在明显的时空分异,不同地理位置的MRTa与MRTs变化幅度分别达-1.3%~544.5%和-6.7%~1375.5%。这种时空变异,部分源于土壤活性碳和缓效性碳组分构成的空间分异。尽管存在较大...  相似文献   

11.
Summary Three laboratory-scale water pipe systems were set up to study the effects of adding two levels of acetic acid (10 and 50 μg acetate eq-C l−1) on the bacterial regrowth in water pipes. The results of the water pipe test showed that nearly all carbon in the acetic acid could be readily utilized by bacteria and resulted in an increase in biomass concentration. The maximum heterotrophic plate counts in biofilm were equal to 3.5 × 104, 8.9 × 105 and 2.9 × 107 c.f.u. cm−2 while the maximum heterotrophic plate counts of free bacteria were equal to 1.2 × 103, 5.0 × 103 and 6.8 × 104 c.f.u. ml−1 for the blank and with addition of 10 and 50 μg acetate eq-C l−1. These results showed that addition of acetic acid to drinking water has a positive effect on the assimilable organic carbon content of drinking water and bacterial regrowth in the distribution system. This effect is enhanced with addition of high-level acetic acid. Batch tests were also conducted using water samples collected from a Taiwanese drinking water distribution system. The bacterial regrowth potentials of the blank were equal to 4.3 × 103, 1.5 × 104, 4.9 × 104 and 7.5 × 104 c.f.u. ml−1 for water samples collected from treatment plant effluent, commercial area, mixed area, and residential area, respectively. These results showed that the biological stability of drinking water is the highest in treatment plant effluent, followed by distributed water of the commercial area, distributed water of the mixed area, and then the distributed water of residential area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号