首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
General aspects of metabolic features of the most prominent CNS intermediate filament proteins, the 200,000 (200K), 150,000 (150K), and 70,000 (70K) dalton proteins of the neuron, and the glial fibrillary acidic protein (GFAP) have been explored using the incubated spinal cord slice from the rat. Measurement of shortterm uptake of3H-labeled amino acids into the individual proteins separated on polyacrylamide gels revealed that of the three neurofilament proteins, 200K was most metabolically active, 150K was less active, and 70K contained very little incorporated radioactivity. Glial fibrillary acidic protein based on Coomassie blue stain affinity showed less metabolic activity than any of the neurofilament proteins. Those relationships were constant at all ages, but the metabolic activity of all CNS intermediate filaments decreased with age. When Ca2+ was present in the medium of the incubated slices, the intermediate filaments were rapidly destroyed, but GFAP was more resistant to degradation than the neurofilament proteins. GFAP and probably the neurofilament proteins also were relatively resistant to Ca2+-activated degradative mechanisms in spinal cords of rats at younger ages (15 day) than in those of older animals (10–18 months). It is likely that the Ca2+ activated protease is less active in developing animals in which the nerve tracts are still elongating, than in adults. These results suggest that GFAP is less active metabolically and more resistant to degradation than the neurofilament proteins at all stages of maturation, but that metabolic activity of all CNS intermediate filaments decreases with age while the susceptibility to degradation increases.Special Issue dedicated to Dr. Elizabeth Roboz-Einstein.  相似文献   

2.
Disruptive effects of calcium upon neurofilaments and glial filaments were studied in white matter of rat optic nerve and spinal cord and in rat peripheral nerve. Filament ultrastructure and tissue protein composition were compared following a calcium influx into excised tissues. A calcium influx was induced by freeze-thawing tissues in media containing calcium (5 mM) while control tissues were freeze-thawed in the presence of EGTA (5 mM). Experimental and control tissues were either fixed by immersion in glutaraldehyde and processed for electron microscopic examination or homogenized in a solubilizing buffer and analyzed for protein content by SDS-polyacrylamide gel electrophoresis. Morphological studies showed that calcium influxes led to the loss of neurofilaments and glial filaments and to their replacement by an amorphous granular material. These morphological changes were accompanied by the loss of neurofilament triplet proteins and glial fibrillary acidic (GFA) protein from whole-tissue homogenates. In addition, a calcium-sensitive 58,000-mol-wt protein was identified in rat optic and peripheral nerve. The findings indicate the widespread occurrence of neurofilament proteolysis following calcium influxes into CNS and PNS tissues. The parallel breakdown of glial filaments and loss of GFA protein subunits suggest the presence of additional calcium-activated proteases(s) in astroglial cells.  相似文献   

3.
In order to examine the relationship between the intermediate filaments from Purkinje fibres of the cow heart conduction system and five proposed subclasses of mammalian intermediate filaments, the gel electrophoresis-derived enzyme-linked immunosorbent assay (GEDELISA) has been used to examine the specificity and crossreactivity of our antibodies against the Purkinje fibre intermediate filament protein, skeletin. Bovine tissues known to contain intermediate filaments of the five main subclasses were examined with antiskeletin and with preimmune serum and the specific antiserum absorbed with pure skeletin as controls. The antibodies raised against Purkinje fibre skeletin reacted with all three polypeptides of the "neurofilament triplet", with glial fibrillary acidic protein (GFAP), with smooth muscle desmin and also slightly with some prekeratin subunits and with endothelial vimentin. From studies with monoclonal antibodies and amino acid sequencing, certain regions of all intermediate filaments are suggested to be structurally related. Here we show that Purkinje fibre skeletin seems to share antigenic determinants with the proposed five main classes of intermediate filaments. Our antibody is the first carefully controlled experimentally induced antibody having such properties. This might be due to the special attributes of the intermediate filament system in Purkinje fibres, which themselves have unique properties.  相似文献   

4.
The earliest gene duplications in the evolution of the intermediate filament proteins created the ancestors of acidic keratins, basic keratins, nonepithelial intermediate filament proteins, and lamins. Biochemistry and function of cytoplasmic intermediate filaments differ greatly from those of lamins. Cytoplasmic intermediate filament proteins have a different cellular location than lamins, form different types of supramolecular structures, and are missing a protein segment found in lamins; but the data presented here indicate that the cytoplasmic intermediate filaments do not have a common ancestor separate from the ancestor of lamins. In the non-epithelial intermediate filament branch, the ancestor of neurofilament proteins and the common ancestor of desmin, vimentin, and glial fibrillary acidic protein (GFAP) diverged first. By evolutionary criteria, the intermediate filament protein recently discovered in neuronal cells does not belong to the neurofilament family but is more closely related to desmin, vimentin, and GFAP. Sequences of different sub-domains yield different evolutionary trees, possibly indicating existence of sub- domain-specific functions.   相似文献   

5.
The expression of intermediate filaments is developmentally regulated. In the mammalian embryo keratins are the first to appear, followed by vimentin, while the principal intermediate filament of the adult brain is glial fibrillary acidic protein. The intermediate filaments expressed by a cell thus reflect its state of differentiation. The differentiation state of cells, and especially of glial cells, in turn determines their ability to support axonal growth. In this study we used three new antibodies directed against three fish intermediate filaments (glial fibrillary acidic protein, keratin 8 and vimentin), in order to determine the identity and level of expression of intermediate filaments present in fish glial cells in culture. We found that fish astrocytes and oligodendrocytes are both able to express keratin 8 and vimentin. We further demonstrate that under proliferative conditions astrocytes express high keratin 8 levels and most oligodendrocytes also express keratin 8, whereas under nonproliferative conditions the astrocytes express only low keratin 8 levels and most oligodendrocytes do not express keratin 8 at all. These results suggest that the fish glial cells retain characteristics of immature cells. The findings are also discussed in relation to the fish glial lineage.  相似文献   

6.
The presence and distribution of intermediate filament proteins in mouse oocytes and preimplantation embryos was studied. In immunoblotting analysis of electrophoretically separated polypeptides, a distinct doublet of polypeptides with Mr of 54K and 57K, reactive with cytokeratin antibodies, was detected in oocytes and in cleavage-stage embryos. A similar doublet of polypeptides, reactive with cytokeratin antibodies, was also detected in late morula-and blastocyst-stage embryos, and in a mouse embryo epithelial cell line (MMC-E). A third polypeptide with Mr of 50K, present in oocytes only as a minor component, was additionally detected in the blastocyst-stage embryos. No cytokeratin polypeptides could be detected in granulosa cells. Immunoblotting with vimentin antibodies gave negative results in both cleavage-stage and blastocyst-stage embryos. In electron microscopy, scattered filaments, 10-11 nm in diameter, were seen in detergent-extracted cleavage-stage embryos. Abundant 10-nm filaments were present in the blastocyst outgrowth cells. In indirect immunofluorescence microscopy (IIF) of oocytes and cleavage-stage embryos, diffuse cytoplasmic staining was seen with antibodies to cytokeratin polypeptides but not with antibodies to vimentin, glial fibrillary acidic protein, or neurofilament protein. Similarly, the inner cell mass (ICM) cells in blastocyst outgrowths showed diffuse cytokeratin-specific fluorescence. We could not detect any significant fibrillar staining in cleavage-stage cells or ICM cells by the IIF method. The first outgrowing trophectoderm cells already had a strong fibrillar cytokeratin organization. These immunoblotting and -fluorescence results suggest that cytokeratin-like polypeptides are present in mouse oocytes and preimplantation-stage embryos, and the electron microscopy observations show that these early stages also contain detergent-resistant 10- to 11-nm filaments. The relative scarcity of these filaments, as compared to the high intensity in the immunoblotting and immunofluorescence stainings, speaks in favor of a nonfilamentous pool of cytokeratin in oocytes and cleavage-stage embryos.  相似文献   

7.
We have investigated the actions of Ca2(+)-calmodulin (CaM)-dependent protein kinase II on various types of non-epithelial intermediate filament proteins, vimentin, desmin, glial fibrillary acidic protein (GFAP) and neurofilament triplet proteins. Most of these filament proteins could serve as substrates. The effects of phosphorylation on the filamentous structure of vimentin were investigated in sedimentation experiments and by using electron microscopy. The amount of unassembled vimentin increased linearly with increased phosphorylation. However, the extent of the effect of phosphorylation on the potential to polymerize was also affected by the MgCl2 concentration, under conditions for reassembly. The actions of Ca2(+)-CaM-dependent protein kinase II on non-epithelial intermediate filaments under physiological conditions are given attention.  相似文献   

8.
Summary Monoclonal and polyclonal antibodies to neurofilament proteins, neuron-specific enolase, glial fibrillary acidic protein and S-100 have been used to demonstrate nerves, ganglion cells and the supportive glial system of the innervation of various organs. The female genitalia, the urinary tract, the respiratory system, the pancreas, the heart and the skin of several mammalian species, including rat, mouse, guinea pig, cat, pig, monkey and man were fixed in parabenzoquinone and portions of each organ were snap frozen. Serial or free-floating thick cryostat sections were stained using indirect immunofluorescence and peroxidase anti-peroxidase immunocytochemistry. In addition, the newly described and highly sensitive immunogold-silver staining technique was used on Bouin's-fixed and wax-embedded tissues.Antibodies to neurofilament proteins seemed to react with neuronal structures in all the species studied. Alternately stained serial sections showed a similar distribution of neurofilament proteins and neuron-specific enolase-containing nerves. Neuron-specific enolase staining had a diffuse appearance and was found to be highly variable, indicating that the neuron-specific enolase content might be related to the physiological state of the nerves and ganglion cells, whereas antibodies to neurofilament protein gave a consistently intense and very clear picture of the ganglion cells and nerve fibres. Antibodies to S-100 stained supportive elements of the peripheral nervous system in all tissues examined, whereas antibodies to glial fibrillary acidic protein were more selective.Abbreviations GFAP glial fibrillary acidic protein - NSE neuron-specific enolase - PBS phosphate-buffered saline - PAP peroxidase anti-peroxidase - FITC fluorescein-isothiocyanate  相似文献   

9.
A quantitative dot immunobinding procedure was used to quantify glial [the S-100 protein and the glial fibrillary acidic (GFA) protein] and neuronal (the 68- and 200-kDa neurofilament polypeptides, neuron-specific enolase, and neuronal cell adhesion molecule) markers. A single intraperitoneal administration of 10 mg/kg of MK 801 blocked the increase of glial parameters and the decrease in content of neuronal marker proteins that occurred as the response to an N-methyl-D-aspartate (NMDA) lesion in the rat hippocampus. The degradation products of GFA protein and the 68-kDa neurofilament polypeptide that were induced by the NMDA lesion did not appear after MK 801 treatment. This study shows that brain-specific proteins are a set of precise tools for the evaluation of neuroprotective effects of antagonists to excitatory amino acids.  相似文献   

10.
The immunocytochemical phenotype was evaluated in a case of Merkel cell carcinoma of the skin. Intermediate filaments, i.e. neurofilament, glial fibrillary acid protein, cytokeratins, keratin and panfilament as well as S-100 protein, calcitonin and epithelial membrane antigen were detected by immunoperoxidase methods. Nodular positivity for neurofilament was observed. The remaining intermediate filaments and other markers were negative. Thus the origin of Merkel cell carcinoma appears uncertain and this tumor probably has neuroendocrine activity.  相似文献   

11.
Monoclonal and polyclonal antibodies to neurofilament proteins, neuron-specific enolase, glial fibrillary acidic protein and S-100 have been used to demonstrate nerves, ganglion cells and the supportive glial system of the innervation of various organs. The female genitalia, the urinary tract, the respiratory system, the pancreas, the heart and the skin of several mammalian species, including rat, mouse, guinea pig, cat, pig, monkey and man were fixed in para-benzoquinone and portions of each organ were snap frozen. Serial or free-floating thick cryostat sections were stained using indirect immunofluorescence and peroxidase anti-peroxidase immunocytochemistry. In addition, the newly described and highly sensitive immunogold-silver staining technique was used on Bouin's-fixed and wax-embedded tissues. Antibodies to neurofilament proteins seemed to react with neuronal structures in all the species studied. Alternately stained serial sections showed a similar distribution of neurofilament proteins and neuron-specific enolase-containing nerves. Neuron-specific enolase staining had a diffuse appearance and was found to be highly variable, indicating that the neuron-specific enolase content might be related to the physiological state of the nerves and ganglion cells, whereas antibodies to neurofilament protein gave a consistently intense and very clear picture of the ganglion cells and nerve fibres. Antibodies to S-100 stained supportive elements of the peripheral nervous system in all tissues examined, whereas antibodies to glial fibrillary acidic protein were more selective.  相似文献   

12.
The distribution of glial intermediate filament molecular markers, glial fibrillary acidic protein (GFAP), and vimentin, in the brain and spinal cord of the African lungfish, Protopterus annectens, was examined by light microscopy immunoperoxidase cytochemistry. Glial fibrillary acidic protein immunoreactivity is clear and is evident in a radial glial system. It consists of fibers of different lengths and thicknesses that are arranged in a regular radial pattern throughout the central nervous system (CNS). They emerge from generally immunopositive radial ependymoglia (tanycytes), lining the ventricular surface, and are directed from the ventricular wall to the meningeal surface. These fibers give rise to endfeet that are apposed to the subpial surface and to blood vessel walls forming the glia limitans externa and the perivascular glial layer, respectively. GFAP-immunopositive star-shaped astrocytes were not found in P. annectens CNS. In the gray matter of the spinal cord, cell bodies of immunopositive radial glia are displaced from the ependymal layer. Vimentin-immunopositive structures are represented by thin fibers mostly localized in the peripheral zones of the brain and the spinal cord. While a few stained fibers appear in the gray matter, the ependymal layer shows no antivimentin immunostaining. In P. annectens the immunocytochemical response of the astroglial intermediate filaments is typical of a mature astroglia cell lineage, since they primarily express GFAP immunoreactivity. This immunocytochemical study shows that the glial pattern of the African lungfish resembles that found in tetrapods such as urodeles and reptiles. The glial pattern of lungfishes is comparable to that of urodeles and reptiles but is not as complex as that of teleosts, birds, and mammals.  相似文献   

13.
Abstract: An immunological technique has been employed to identify proteins, separated in polyacrylamide gels, which show changes in brain samples from cases of multiple sclerosis and subacute sclerosing panencephalitis. Sodium dodecylsulphate-treated proteins in particulate and soluble fractions were separated in polyacrylamide slab gels, transferred electrophoretically onto cellulose nitrate sheets, incubated with specific antisera and visualized by an immunoperoxidase method. Protein bands showing changes were identified using antisera raised against the myelin basic and Wolfgram proteins, the neurofilament triplet proteins, tubulin and glial fibrillary acidic protein. In addition to the loss of myelin proteins, decreases in the neurofilament proteins and in tubulin were seen in both multiple sclerosis and subacute sclerosing panencephalitis samples. The distribution of glial fibrillary acidic protein polypeptides in the particulate and soluble fractions of plaque samples appeared to vary according to the degree of fibrosis. Changes in the levels of the myelin-associated glycoprotein, the lower molecular weight component of the Wolfgram protein, albumin and immunoglobulin G, none of which were visualized by protein staining, were also seen. This immunological technique has allowed a closer examination of changes occurring in brain protein spectra in multiple sclerosis and subacute sclerosing panencephalitis.  相似文献   

14.
We describe the complete sequence of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein. The coding sequence is interrupted by two intervening sequences which align perfectly with the first two intervening sequences in the gene encoding NF-L (the low-molecular-mass neurofilament protein); there is no intron in the gene encoding NF-M corresponding to the third intron in NF-L. Therefore, both the number of introns and their arrangement in the genes coding NF-L and NF-M contrast sharply with the number and arrangement of introns in the genes of known sequence, encoding other members of the intermediate filament multigene family (desmin, vimentin, glial fibrillary acidic protein and the acidic and basic keratins); with the exception of a single truncated keratin gene that lacks an encoded tailpiece, these genes all contain eight introns, of which at least six are placed at homologous locations. Assuming the existence of a primordial intermediate filament gene containing most (if not all) the introns found in contemporary non-neurofilament intermediate filament genes, it seems likely that an RNA-mediated transposition event was involved in the generation of an ancestral gene encoding the NF polypeptides. A combination of insertional transposition and gene-duplication events could then explain the anomalous number and placement of introns within these genes. Consistent with this notion, we show that the genes encoding NF-M and NF-L are linked.  相似文献   

15.
The regional changes in quantities of the glial S-100 protein and the neuron specific enolase in the rat nervous system have been studied after long-term exposure to 2,5-hexanedione. The wet weights of most of the examined nervous tissues were found to be reduced, with an extensive effect seen in the brain stem. Using dot immunobinding assays, the concentrations of S-100 were found to be increased in most of the examined tissues, but unaffected in the brain stem. The total amount of S-100 per tissue was markedly reduced in the brain stem. The content of neuron specific enolase was reduced only in the brain stem. Thus the effects of 2,5-hexanedione on the nervous system varied regionally. The brain stem was severely atrophied with a reduction of neuronal as well as of glial marker proteins. Other brain regions contained increased glial cell marker proteins as signs of progressive astroglial reactions.  相似文献   

16.
Using the smallest subunit (NF-L) of a neurofilament and a glial fibrillary acidic protein, the subunit arrangement in intermediate filaments was studied by low-angle rotary shadowing. NF-L formed a pair of 70 to 80 nm rods in a low ionic strength solution at pH 6.8. Two 70 to 80 nm rods appeared to associate in an antiparallel manner with an overlap of about 55 nm, almost the same length as the alpha-helix-rich central rod domain of intermediate filament proteins. The overlap extended for three-beaded segments, present at 22 nm intervals along the pairs of rods. The observations that (1) 70 to 80 nm rods were a predominant structure in a low ionic strength solution at pH 8.5, (2) the molecular weights of the rod and the pair were measured by sedimentation equilibrium as 190,000 and 37,000 respectively, and (3) the rods formed from the trypsin-digested NF-L had a length of about 47 nm, indicated that the 70 to 80 nm rod is the four-chain complex and the pair of rods is the eight-chain complex. Similar structures were observed with glial fibrillary acidic protein, indicating that these oligomeric structures are common to other intermediate filament proteins. NF-L assembled into short intermediate-sized filaments upon dialysis against a low-salt solution containing 1 to 2 mM-MgCl2 at 4 degrees C. The majority of these short filaments possessed four or five-beaded segments, suggesting that the pair of rods were arranged in a half-staggered fashion in neurofilaments. On the basis of these observations, we propose the following model for the intermediate filament subunit arrangement. (1) The four-chain complex is the 70 to 80 nm rod, in which two coiled-coil molecules align in parallel and in register. (2) Two four-chain complexes form the eight-chain complex by associating in an antiparallel fashion with the overlap of the entire central rod domain. (3) The eight-chain complex is the building block of the intermediate filament. The eight-chain complexes are arranged in a half-staggered fashion within the intermediate filament.  相似文献   

17.
Vimentin in the Central Nervous System   总被引:7,自引:0,他引:7  
Intermediate filament proteins were identified by two-dimensional gel electrophoresis in urea extracts of rat optic nerves undergoing Wallerian degeneration and in cytoskeletal preparations of rat brain and spinal cord during postnatal development. The glial fibrillary acidic (GFA) protein and vimentin were the major optic nerve proteins following Wallerian degeneration. Vimentin was a major cytoskeletal component of newborn central nervous system (CNS) and then progressively decreased until it became barely identifiable in mature brain and spinal cord. The decrease of vimentin occurred concomitantly with an increase in GFA protein. A protein with the apparent molecular weight of 61,000 and isoelectric point of 5.6 was identified in both cytoskeletal preparations of brain and spinal cord, and in urea extracts of normal optic nerves. The protein disappeared together with the polypeptides forming the neurofilament triplet in degenerated optic nerves.  相似文献   

18.
The association and interaction of plectin (Mr 300,000) with intermediate filaments and filament subunit proteins were studied. Immunoelectron microscopy of whole mount cytoskeletons from various cultured cell lines (rat glioma C6, mouse BALB/c 3T3, and Chinese hamster ovary) and quick-frozen, deep-etched replicas of Triton X-100-extracted rat embryo fibroblast cells revealed that plectin was primarily located at junction sites and branching points of intermediate filaments. These results were corroborated by in vitro recombination studies using vimentin and plectin purified from C6 cells. Filaments assembled from mixtures of both proteins were extensively crosslinked by oligomeric plectin structures, as demonstrated by electron microscopy of negatively stained and rotary-shadowed specimens as well as by immunoelectron microscopy; the binding of plectin structures on the surface of filaments and cross-link formation occurred without apparent periodicity. Plectin's cross-linking of reconstituted filaments was also shown by ultracentrifugation experiments. As revealed by the rotary-shadowing technique, filament-bound plectin structures were oligomeric and predominantly consisted of a central globular core region of 30-50 nm with extending filaments or filamentous loops. Solid-phase binding to proteolytically degraded vimentin fragments suggested that plectin interacts with the helical rod domain of vimentin, a highly conserved structural element of all intermediate filament proteins. Accordingly, plectin was found to bind to the glial fibrillar acidic protein, the three neurofilament polypeptides, and skin keratins. These results suggest that plectin is a cross-linker of vimentin filaments and possibly also of other intermediate filament types.  相似文献   

19.
The origin of introns and their role (if any) in gene expression, in the evolution of the genome, and in the generation of new expressed sequences are issues that are understood poorly, if at all. Multigene families provide a favorable opportunity for examining the evolutionary history of introns because it is possible to identify changes in intron placement and content since the divergence of family members from a common ancestral sequence. Here we report the complete sequence of the gene encoding the 68-kilodalton (kDa) neurofilament protein; the gene is a member of the intermediate filament multigene family that diverged over 600 million years ago. Five other members of this family (desmin, vimentin, glial fibrillary acidic protein, and type I and type II keratins) are encoded by genes with six or more introns at homologous positions. To our surprise, the number and placement of introns in the 68-kDa neurofilament protein gene were completely anomalous, with only three introns, none of which corresponded in position to introns in any characterized intermediate filament gene. This finding was all the more unexpected because comparative amino acid sequence data suggest a closer relationship of the 68-kDa neurofilament protein to desmin, vimentin, and glial fibrillary acidic protein than between any of these three proteins and the keratins. It appears likely that an mRNA-mediated transposition event was involved in the evolution of the 68-kDa neurofilament protein gene and that subsequent events led to the acquisition of at least two of the three introns present in the contemporary sequence.  相似文献   

20.
The content and polypeptide composition of glial fibrillary acidic protein (GFAP) in the rat cerebral cortex, cerebellum, hippocampus, and mesencephalon were studied under conditions of experimental neurosis. Significant changes of the total GFAP content were observed in the hippocampus, mesencephalon, and cerebellum. Both the content and polypeptide composition of soluble GFAP form were markedly modified. These changes of glial filament protein apparently reflect the peculiarities of the reorganization of the astrocyte intermediate filaments at the animal’s long-term neurotization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号