首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J R Pierce  R Case  M S Tang 《Biochemistry》1989,28(14):5821-5826
Recognition of damage induced by N-hydroxy-2-aminofluorene (N-OH-AF) and N-acetoxy-2-(acetylamino)fluorene (NAAAF) in both phi X174 RFI supercoiled DNA and a linear DNA fragment by purified UVRA, UVRB, and UVRC proteins was investigated. We have previously demonstrated that N-OH-AF and NAAAF treatments produce N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(deoxyguanosin-8-yl)-2-(acetylamino)fluorene (dG-C8-AAF), respectively, in DNA. Using a piperidine cleavage method and DNA sequence analysis, we have found that all guanine residues can be modified by N-OH-AF and NAAAF. These two kinds of adducts have different impacts on the DNA helix structure; while dG-C8-AF maintains the anti configuration, dG-C8-AAF is in the syn form. phi X174 RF DNA-Escherichia coli transfection results indicate that while the uvrA, uvrB, and uvrC gene products are needed to repair dG-C8-AAF, the uvrC, but not the uvrA or uvrB gene products, is needed for repair of dG-C8-AF. However, we have found that in vitro the UVRA, UVRB, and UVRC proteins must work in concert to nick both dG-C8-AF and dG-C8-AAF. In general, the reactions of UVRABC nuclease toward dG-C8-AF are similar to those toward dG-C8-AAF; it incises seven to eight nucleotides from the 5' side and three to four nucleotides from the 3' side of the DNA adduct. Evidence is presented to suggest that hydrolysis on the 3' and 5' sides of the damaged base by UVRABC nuclease is not simultaneous and that at least occasionally hydrolysis occurs only on the 3' side or on the 5' side of the damage site. The possible mechanisms of UVRABC nuclease incision for AF-DNA are discussed.  相似文献   

2.
We investigate the influence of base sequence context on the conformations of the 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts through molecular dynamics (MD) simulations with free energy calculations, and relate the structural findings to results of nucleotide excision repair (NER) assays in human cell extracts. In previous studies, these adducts were studied in the CA*A sequence context, and here we report results for the CA*C sequence. Our simulations indicate that the base sequence context affects the syn-anti conformational equilibrium in the 10S (+) adduct by modulating the barrier heights between these states on the energy surface, with a higher barrier in the CA*C case. Our nucleotide excision repair assay finds greater NER susceptibilities in the 10S (+) adduct for the CA*C sequence context. A structural rationale ties together these results. A sequence specific hydrogen bond, accompanied by a significantly increased roll and consequent bending in the 10S (+) adduct, has been found in our simulations for the CA*C sequence, which could account for the enhanced nucleotide excision repair as well as the syn-anti equilibrium difference we observe in this isomer and sequence. Such sequence specific differential repair could contribute to the existence of mutational hotspots and thereby contribute to the complexity of cancer initiation.  相似文献   

3.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

4.
The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.  相似文献   

5.
Locked nucleic acid (LNA) is a chemically modified nucleic acid with its sugar ring locked in an RNA-like (C3′-endo) conformation. LNAs show extraordinary thermal stabilities when hybridized with DNA, RNA or LNA itself. We performed molecular dynamics simulations on five isosequential duplexes (LNA–DNA, LNA–LNA, LNA–RNA, RNA–DNA and RNA–RNA) in order to characterize their structure, dynamics and hydration. Structurally, the LNA–DNA and LNA–RNA duplexes are found to be similar to regular RNA–DNA and RNA–RNA duplexes, whereas the LNA–LNA duplex is found to have its helix partly unwound and does not resemble RNA–RNA duplex in a number of properties. Duplexes with an LNA strand have on average longer interstrand phosphate distances compared to RNA–DNA and RNA–RNA duplexes. Furthermore, intrastrand phosphate distances in LNA strands are found to be shorter than in DNA and slightly shorter than in RNA. In case of induced sugar puckering, LNA is found to tune the sugar puckers in partner DNA strand toward C3′-endo conformations more efficiently than RNA. The LNA–LNA duplex has lesser backbone flexibility compared to the RNA–RNA duplex. Finally, LNA is less hydrated compared to DNA or RNA but is found to have a well-organized water structure.  相似文献   

6.
One- and two-dimensional NMR spectroscopy has been used combined with molecular dynamics to determine the fine structure of the DNA duplex 5'-d(AGGAGCCACG).d(CGTGGFTCCT) where F is the N-(2-deoxy-beta-D-erythro-pentofuranosyl)formamide residue which is a ring fragmentation product of thymine. The formamide deoxyribose exists as two isomers with respect to the orientation about the peptide bond. The two isomers (trans and cis) are observed in a ratio 3:2 in solution. For both species, the oligonucleotide adopts a globally B form structure although conformational changes are observed around the mismatch site. The formamide residue, whatever the isomer, is intrahelical and can pair with the guanine on the opposite strand with one hydrogen bond. For the cis isomer, the residue adopts a syn orientation and is able to form a second hydrogen bond with the guanine on the 5' side on the same strand. Off-resonance ROESY experiments have been used to investigate the chemical exchange observed at low temperature of the duplex. Conformational exchange has only been found for the oligonucleotide with the formamide residue in the trans conformation.  相似文献   

7.
Chemotherapeutic agents such as mitomycin C or nitrogen mustards induce DNA inter-strand cross-links (ICL) and are highly toxic, thus constituting an useful tool to treat some human degenerative diseases, such as cancer. Additionally, psoralens plus UV-A (PUVA), which also induce ICL, find use in treatment of patients afflicted with psoriasis and vitiligo. The repair of DNA ICL generated by different molecules involves a number of multi-step DNA repair pathways. In bacteria, as in eukaryotic cells, if DNA ICL are not tolerated or repaired via nucleotide excision repair (NER), homologous recombination or translesion synthesis pathways, these DNA lesions may lead to mutations and cell death. Herein, we bring new insights to the role of Escherichia coli nucleotide excision repair genes uvrA, uvrB and uvrC in the repair of DNA damage induced by some chemotherapeutic agents and psoralen derivatives plus UV-A. These new observations point to a novel role for the UvrB protein, independent of its previously described role in the Uvr(A)BC complex, which could be specific for repair of monoadducts, intra-strand biadducts and/or ICL.  相似文献   

8.
A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2′deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications.  相似文献   

9.
Atomistic molecular dynamics simulations have been used to investigate the adsorption of permethyldecasilane (MS10) on the silicon (001) surface. The condition under which the self-assembled monolayer forms is examined. The properties of the well-ordered structures, including the packing patterns, the equilibrium distances between two neighboring chains, and the tilt angles, are calculated to characterize the structure of the self-assembled monolayer. The results are comparable with those obtained experimentally.  相似文献   

10.
Many human neurodegenerative diseases are associated with amyloid fibril formation. The human 99-residue beta(2)-microglobulin (beta2m) is one of the most intensively studied amyloid-forming proteins. Recent studies show that the C-terminal fragments 72-99, 83-89, and 91-96 form by themselves amyloid fibrils in vitro and play a significant role in fibrillization of the full-length beta2m protein under acidic pH conditions. In this work, we have studied the equilibrium structures of the 17-residue fragment 83-99 in solution, and investigated its dimerization process by multiple molecular dynamics simulations. We find that an intertwined dimer, with the positions of the beta-strands consistent with the results for the monomer, is a possible structure for two beta2m(83-89) peptides. Based on our molecular-dynamics-generated dimeric structure, a protofibril model is proposed for the full-length beta2m protein.  相似文献   

11.
Summary In this paper we present longitudinal relaxation times, order parameters and effective correlation times for the base and sugar carbons in both strands of the oligonucleotide duplexes d(TCGCG)2 and d(CGCGCG)2, as calculated from 400 ps molecular dynamics trajectories in aqueous solution. The model-free approach (Lipari and Szabo, 1982) was used to determine the amplitudes and time scales of the internal motion. Comparisons were made with NMR relaxation measurements (Borer et al., 1994). The order parameters could acceptably be reproduced, and the effective correlation times were found to be lower than the experimental estimates. Reasonable T1 relaxation times were obtained in comparison with experiment for the nonterminal nucleosides. The T1 relaxation times were found to depend mainly on the order parameters and overall rotational correlation time.Abbreviations MD molecular dynamics - CSA chemical shift anisotropyTo whom correspondence should be addressed.  相似文献   

12.
Bharatham N  Chi SW  Yoon HS 《PloS one》2011,6(10):e26014
Bcl-X(L), an antiapoptotic Bcl-2 family protein, plays a central role in the regulation of the apoptotic pathway. Heterodimerization of the antiapoptotic Bcl-2 family proteins with the proapoptotic family members such as Bad, Bak, Bim and Bid is a crucial step in the apoptotic regulation. In addition to these conventional binding partners, recent evidences reveal that the Bcl-2 family proteins also interact with noncanonical binding partners such as p53. Our previous NMR studies showed that Bcl-X(L): BH3 peptide and Bcl-X(L): SN15 peptide (a peptide derived from residues S15-N29 of p53) complex structures share similar modes of bindings. To further elucidate the molecular basis of the interactions, here we have employed molecular dynamics simulations coupled with MM/PBSA approach. Bcl-X(L) and other Bcl-2 family proteins have 4 hydrophobic pockets (p1-p4), which are occupied by four systematically spaced hydrophobic residues (h1-h4) of the proapoptotic Bad and Bak BH3 peptides. We observed that three conserved hydrophobic residues (F19, W23 and L26) of p53 (SN15) peptide anchor into three hydrophobic pockets (p2-p4) of Bcl-X(L) in a similar manner as BH3 peptide. Our results provide insights into the novel molecular recognition by Bcl-X(L) with p53.  相似文献   

13.
J C Delaney  J M Essigmann 《Biochemistry》2001,40(49):14968-14975
Understanding the origins of mutational hotspots is complicated by the intertwining of several variables. The selective formation, repair, and replication of a DNA lesion, such as O(6)-methylguanine (m(6)G), can, in principle, be influenced by the surrounding nucleotide environment. A nearest-neighbor analysis was used to address the contribution of sequence context on m(6)G repair by the Escherichia coli methyltransferases Ada or Ogt, and on DNA polymerase infidelity in vivo. Sixteen M13 viral genomes with m(6)G flanked by all permutations of G, A, T, and C were constructed and individually transformed into repair-deficient and repair-proficient isogenic cell strains. The 16 genomes were introduced in duplicate into 5 different cellular backgrounds for a total of 160 independent experiments, for which mutations were scored using a recently developed assay. The Ada methyltransferase demonstrated strong 5' and 3' sequence-specific repair of m(6)G in vivo. The Ada 5' preference decreased in the general order: GXN > CXN > TXN > AXN (X = m(6)G, N = any base), while the Ada 3' preference decreased in the order: NX(T/C) > NX(G/A), with mutation frequencies (MFs) ranging from 35% to 90%. The Ogt methyltransferase provided MFs ranging from 10% to 25%. As was demonstrated by Ada, the Ogt methyltransferase repaired m(6)G poorly in an AXN context. When both methyltransferases were removed, the MF was nearly 100% for all sequence contexts, consistent with the view that the replicative DNA polymerase places T opposite m(6)G during replication irrespective of the local sequence environment.  相似文献   

14.
The structure of the 1:1 nogalamycin:d(ATGCAT)2 complex has been determined in solution from high-resolution NMR data and restrained molecular dynamics (rMD) simulations using an explicit solvation model. The antibiotic intercalates at the 5'-TpG step with the nogalose lying along the minor groove towards the centre of the duplex. Many drug-DNA nuclear Overhauser enhancements (NOEs) in the minor groove are indicative of hydrophobic interactions over the TGCA sequence. Steric occlusion prevents a second nogalamycin molecule from binding at the symmetry-related 5'-CpA site, leading to the conclusion that the observed binding orientation in this complex is the preferred orientation free of the complication of end-effects (drug molecules occupy terminal intercalation sites in all X-ray structures) or steric interactions between drug molecules (other NMR structures have two drug molecules bound in close proximity), as previously suggested. Fluctuations in key structural parameters such as rise, helical twist, slide, shift, buckle and sugar pucker have been examined from an analysis of the final 500 ps of a 1 ns rMD simulation, and reveal that many sequence-dependent structural features previously identified by comparison of different X-ray structures lie within the range of dynamic fluctuations observed in the MD simulations. Water density calculations on MD simulation data reveal a time-averaged pattern of hydration in both the major and minor groove, in good agreement with the extensive hydration observed in two related X-ray structures in which nogalamycin is bound at terminal 5'-TpG sites. However, the pattern of hydration determined from the sign and magnitude of NOE and ROE cross-peaks to water identified in 2D NOESY and ROESY experiments identifies only a few "bound" water molecules with long residence times. These solvate the charged bicycloaminoglucose sugar ring, suggesting an important role for water molecules in mediating drug-DNA electrostatic interactions within the major groove. The high density of water molecules found in the minor groove in X-ray structures and MD simulations is found to be associated with only weakly bound solvent in solution.  相似文献   

15.
Fujimi TJ  Kariya Y  Tsuchiya T  Tamiya T 《Gene》2002,284(1-2):225-231
A protein disulfide isomerase (PDI) coding sequence was cloned from a cDNA library derived from carrot (Daucus carota L.) somatic embryos. The cDNA is 2060 bp in length and encodes for a protein of 581 amino acids and molecular weight of 64.4 kDa. Primary structure analysis of the deduced protein revealed two thioredoxin-like active sites and an endoplasmic reticulum-retention signal at its C-terminus, which is also found in PDIs in plants and animals. Although between the carrot protein and other plant PDIs there is only about 30% identity, the active site regions are almost identical. The corresponding mRNA was found in varying amounts, in all tissues investigated. A recombinant protein expressed from the carrot cDNA clone effectively catalyzed both glutathione-insulin transhydrogenation and the oxidative renaturation of denatured RNase A. These results suggest that the protein coded for by the carrot gene is a novel member of the PDI family in plants. We therefore designated this novel carrot gene PDIL1. The protein expressed by the PDIL1 cDNA sequence had a highly acidic stretch at its N-terminal region (no such domain exists in known plant PDIs), and was located far from known plant PDIs on a maximum likelihood tree. The PDIL1 gene, together with closely-related genes identified in Arabidopsis and tomato, was suggested to belong to a novel subfamily of PDIs.  相似文献   

16.
Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G3-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8-aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo (Kf) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structures.  相似文献   

17.
Determination of the solution structure of the duplex d(GCAAGTC(HE)AAAACG)·d(CGTTTTAGACTTGC) containing a 3-(2-hydroxyethyl)-2′-deoxyuridine·deoxyadenine (HE·A) base pair is reported. The three-dimensional solution structure, determined starting from 512 models via restrained molecular mechanics using inter-proton distances and torsion angles, converged to two final families of structures. For both families the HE and the opposite A residues are intrahelical and in the anti conformation. The hydroxyethyl chain lies close to the helix axis and for one family the hydroxyl group is above the HE·A plane and in the other case it is below. These two models were used to start molecular dynamic calculations with explicit solvent to explore the hydrogen bonding possibilities of the HE·A base pair. The dynamics calculations converge finally to one model structure in which two hydrogen bonds are formed. The first is formed all the time and is between HEO4 and the amino group of A, and the second, an intermittent one, is between the hydroxyl group and the N1 of A. When this second hydrogen bond is not formed a weak interaction CH···N is possible between HEC7H2 and N1A21. All the best structures show an increase in the C1′–C1′ distance relative to a Watson–Crick base pair.  相似文献   

18.
Histidine rich protein II derived peptide (HRP II 169-182) was investigated by molecular dynamics, MD, simulation and (17)O electric field gradient, EFG, tensor calculations. MD simulation was performed in water at 300 K with alpha-helix initial structure. It was found that peptide loses its initial alpha-helix structure rapidly and is converted to random coil and bent secondary structures. To understand how peptide structure affects EFG tensors, initial structure and final conformations resulting from MD simulations were used to calculate (17)O EFG tensors of backbone carbonyl oxygens. Calculations were performed using B3LYP method and 6-31+G basis set. Calculated (17)O EFG tensors were used to evaluate quadrupole coupling constants, QCC, and asymmetry parameters, eta(Q). Difference between the calculated QCC and eta(Q) values revealed how hydrogen-bonding interactions affect EFG tensors at the sites of each oxygen nucleus.  相似文献   

19.
The one-electron oxidation of guanine in DNA by carbonate radical anions, a decomposition product of peroxynitrosocarbonate which is associated with the inflammatory response, can lead to the formation of intrastrand cross-links between guanine and thymine bases [Crean et al. (Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines. Nucleic Acids Res. 2008; 36: 742-755.)]. These involve covalent bonds between the C8 positions of guanine (G*) and N3 of thymine (T*) in 5'-d(…G*pT*…) and 5'-d(…G*pCpT*…) sequence contexts. We have performed nucleotide excision repair (NER) experiments in human HeLa cell extracts which show that the G*CT* intrastrand cross-link is excised with approximately four times greater efficiency than the G*T* cross-link embedded in 135-mer DNA duplexes. In addition, thermal melting studies reveal that both lesions significantly destabilize duplex DNA, and that the destabilization induced by the G*CT* cross-link is considerably greater. Consistent with this difference in NER, our computations show that both lesions dynamically distort and destabilize duplex DNA. They disturb Watson-Crick base-pairing and base-stacking interactions, and cause untwisting and minor groove opening. These structural perturbations are much more pronounced in the G*CT* than in the G*T* cross-link. Our combined experimental and computational studies provide structural and thermodynamic understanding of the features of the damaged duplexes that produce the most robust NER response.  相似文献   

20.
The formation of the complex between the d-fragment of the complement component C3 (C3d) and the modular complement receptor-2 (CR2) is important for cross-linking foreign antigens with surface-bound antibodies and C3d on the surface of B cells. The first two modules of CR2, complement control protein modules (CCPs), participate in non-bonded interactions with C3d. We have used computational methods to analyze the dynamic and electrostatic properties of the C3d-CR2(CCP1-2) complex. The interaction between C3d and CR2 is known to depend on pH and ionic strength. Also, the intermodular mobility of the CR2 modules has been questioned before. We performed a 10 ns molecular dynamics simulation to generate a relaxed structure from crystal packing effects for the C3d-CR2(CCP1-2) complex and to study the energetics of the C3d-CR2(CCP1-2) association. The MD simulation suggests a tendency for intermodular twisting in CR2(CCP1-2). We propose a two-step model for recognition and binding of C3d with CR2(CCP1-2), driven by long and short/medium-range electrostatic interactions. We have calculated the matrix of specific short/medium-range pairwise electrostatic free energies of interaction involved in binding and in intermodular communications. Electrostatic interactions may mediate allosteric effects important for C3d-CR2(CCP1-2) association. We present calculations for the pH and ionic strength-dependence of C3d-CR2(CCP1-2) ionization free energies, which are in overall agreement with experimental binding data. We show how comparison of the calculated and experimental data allows for the decomposition of the contributions of electrostatic from other effects in association. We critically compare predicted stabilities for several mutants of the C3d-CR2(CCP1-2) complex with the available experimental data for binding ability. Finally, we propose that CR2(CCP1-2) is capable of assuming a large array of intermodular topologies, ranging from closed V-shaped to open linear states, with similar recognition properties for C3d, but we cannot exclude an additional contact site with C3d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号