首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cockayne syndrome (CS) is a human disease characterized by sensitivity to sunlight, severe neurological abnormalities, and accelerated aging. CS has two complementation groups, CS-A and CS-B. The CSB gene encodes the CSB protein with 1493 amino acids. We previously reported that the CSB protein is involved in cellular repair of 8-hydroxyguanine, an abundant lesion in oxidatively damaged DNA and that the putative helicase motif V/VI of the CSB may play a role in this process. The present study investigated the role of the CSB protein in cellular repair of 8-hydroxyadenine (8-OH-Ade), another abundant lesion in oxidatively damaged DNA. Extracts of CS-B-null cells and mutant cells with site-directed mutation in the motif VI of the putative helicase domain incised 8-hydroxyadenine in vitro less efficiently than wild type cells. Furthermore, CS-B-null and motif VI mutant cells accumulated more 8-hydroxyadenine in their genomic DNA than wild type cells after exposure to gamma-radiation at doses of 2 or 5 Gy. These results suggest that the CSB protein contributes to cellular repair of 8-OH-Ade and that the motif VI of the putative helicase domain of CSB is required for this activity.  相似文献   

3.
4.
5.
Proper maintenance of telomere length and structure is necessary for normal proliferation of mammalian cells. Mammalian telomere length is regulated by a number of proteins including human repressor activator protein (hRap1), a known association factor of TRF2. To further delineate hRap1 function and its associated proteins, we affinity-purified and identified the hRap1 protein complex through mass spectrometry analysis. In addition to TRF2, we found DNA repair proteins Rad50, Mre11, PARP1 (poly(ADP-ribose) polymerase), and Ku86/Ku70 to be in this telomeric complex. We demonstrated by deletional analysis that Rad-50/Mre-11 and Ku86 were recruited to hRap1 independent of TRF2. PARP1, however, most likely interacted with hRap1 through TRF2. Interestingly, knockdown of endogenous hRap1 expression by small hairpin interference RNA resulted in longer telomeres. In addition, overexpression of full-length and mutant hRap1 that lacked the BRCA1 C-terminal domain functioned as dominant negatives and extended telomeres. Deletion of a novel linker domain of hRap1 (residues 199-223), however, abolished the dominant negative effect of hRap1 overexpression. These results indicate that hRap1 negatively regulates telomere length in vivo and suggest that the linker region of hRap1 may modulate the recruitment of negative regulators of telomere length.  相似文献   

6.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

7.
A variety of telomere protection programs are utilized to preserve telomere structure. However, the complex nature of telomere maintenance remains elusive. The Timeless protein associates with the replication fork and is thought to support efficient progression of the replication fork through natural impediments, including replication fork block sites. However, the mechanism by which Timeless regulates such genomic regions is not understood. Here, we report the role of Timeless in telomere length maintenance. We demonstrate that Timeless depletion leads to telomere shortening in human cells. This length maintenance is independent of telomerase, and Timeless depletion causes increased levels of DNA damage, leading to telomere aberrations. We also show that Timeless is associated with Shelterin components TRF1 and TRF2. Timeless depletion slows telomere replication in vitro, and Timeless-depleted cells fail to maintain TRF1-mediated accumulation of replisome components at telomeric regions. Furthermore, telomere replication undergoes a dramatic delay in Timeless-depleted cells. These results suggest that Timeless functions together with TRF1 to prevent fork collapse at telomere repeat DNA and ensure stable maintenance of telomere length and integrity.  相似文献   

8.
Telomere maintenance is essential for continued cell proliferation and chromosome stability. Telomeres are maintained by telomerase and a collection of associated proteins. The telomeric protein telomeric repeat binding factor 1 (TRF1) negatively regulates telomere length by inhibiting access of telomerase at telomere termini. Here we report that TRF1 interacts with the beta subunit of casein kinase 2 (CK2) and serves as a substrate for CK2. CK2-mediated phosphorylation is required for the efficient telomere binding of TRF1 in vitro and in vivo. Inhibition of CK2 by the CK2 inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole decreased the ability of TRF1 to bind telomeric DNA. The resulting telomere-unbound form of TRF1 was then ubiquitinated and degraded by the proteasome. Partial knockdown of CK2 by small interfering RNA resulted in removal of TRF1 from telomeres and subsequent degradation of TRF1. Mapping of the CK2 target site identified threonine 122 as a substrate in TRF1. A threonine to alanine change at this position led to a diminished DNA binding due to reduced dimerization of TRF1. In addition, phosphorylation of threonine 122 seemed critical for TRF1-mediated telomere length control. Our findings suggest that CK2-mediated phosphorylation of TRF1 plays an important role in modulating telomere length homeostasis by determining the levels of TRF1 at telomeres.  相似文献   

9.
Loss of hPot1 function leads to telomere instability and a cut-like phenotype   总被引:15,自引:0,他引:15  
The human telomere binding protein hPot1 binds to the most distal single-stranded extension of telomeric DNA in vitro, and probably in vivo, as well as associating with the double-stranded telomeric DNA binding proteins TRF1 and TRF2 through the bridging proteins PTOP (also known as PIP1 or TINT1) and TIN2. Disrupting either the DNA binding activity of hPot1 or its association with PTOP results in elongated telomeres, suggesting a role for hPot1 in telomere length regulation. However, mutations to POT1 and Cdc13p, the fission and budding yeast genes encoding the structural orthologs of this protein, leads to telomere instability and cell death. Thus, it is possible that the hPot1 protein may also serve to cap and protect telomeres in humans. Indeed, we now find that knocking down the expression of hPot1 in human cells causes apoptosis or senescence, as well as an increase in telomere associations and anaphase bridges, telltale signs of telomere instability. In addition, knockdown cells also displayed chromatin bridges between interphase cells, reminiscent of the cut phenotype that was first described in fission yeast and in which cytokinesis progresses despite a failure of chromatid separation. However, unlike the yeast cut phenotypes, we suggest that the cut-like phenotype observed in hPot1 knockdown cells is a consequence of the fusion of chromosome ends and that this fusion impedes proper chromosomal segregation. We conclude that hPot1 protects chromosome ends from illegitimate recombination, catastrophic chromosome instability, and abnormal chromosome segregation.  相似文献   

10.
Wu Y  Zacal NJ  Rainbow AJ  Zhu XD 《DNA Repair》2007,6(2):157-166
TRF2, a telomere-binding protein, is a crucial player in telomere length maintenance. Overexpression of TRF2 results in telomere shortening in both normal primary fibroblasts and telomerase-positive cancer cells. TRF2 is found to be associated with XPF-ERCC1, a structure-specific endonuclease involved in nucleotide excision repair, crosslink repair and DNA recombination. XPF-ERCC1 is implicated in TRF2-dependent telomere loss in mouse keratinocytes, however, whether XPF-ERCC1 and its nuclease activity are required for TRF2-mediated telomere shortening in human cells is unknown. Here we report that TRF2-induced telomere shortening is abrogated in human cells deficient in XPF, demonstrating that XPF-ERCC1 is required for TRF2-promoted telomere shortening. To further understand the role of XPF in TRF2-dependent telomere shortening, we generated constructs containing either wild type XPF or mutant XPF proteins carrying amino acid substitutions in its conserved nuclease domain. We show that wild type XPF can complement XPF-deficient cells for repair of UV-induced DNA damage whereas the nuclease-inactive XPF proteins fail to do so, indicating that the nuclease activity of XPF is essential for nucleotide excision repair. In contrast, both wild type XPF and nuclease-inactive XPF proteins, when expressed in XPF-deficient cells, are able to rescue TRF2-mediated telomere shortening. Thus, our results suggest that the function of XPF in TRF2-mediated telomere shortening is conserved between mouse and human. Furthermore, our findings reveal an unanticipated nuclease-independent function of XPF in TRF2-mediated telomere shortening.  相似文献   

11.
12.
13.
14.
15.
TRF1, a telomere-binding protein, is important for telomere protection and homeostasis. PinX1 interacts with TRF1, but the physiological consequences of their interaction in telomere protection are not yet understood. Here we investigated PinX1 function on TRF1 stability in HeLa cells. PinX1 overexpression stabilized TRF1, but PinX1 depletion by siRNA led to TRF1 degradation, TRF1 ubiquitination, and less TRF1 telomere association. The depletion also induced DNA damage responses at telomeres and chromosome instability. These telomere dysfunctional phenotypes were in fact due to TRF1 deficiency. We also report that hTERT, a catalytic component of telomerase, plays dual roles in the TRF1 steady state pathway. PinX1-mediated TRF1 stability was not observed in hTERT-negative immortal cells, but was pronounced when hTERT was ectopically expressed in the cells, suggesting that hTERT may be needed in the PinX1-mediated TRF1 stability pathway. Interestingly, the knockdown of both PinX1 and hTERT in HeLa cells stabilized TRF1, suppressed DNA damage response activation, and restored chromosome stability. In summary, our findings suggested that PinX1 may maintain telomere integrity by regulating TRF1 stability and that hTERT may act as both a positive and a negative regulator of TRF1 homeostasis in a PinX1-dependent manner.  相似文献   

16.
17.
18.
Tankyrase1 is a multifunctional poly(ADP-ribose) polymerase that can localize to telomeres through its interaction with the shelterin component TRF1. Tankyrase1 poly(ADP-ribosyl)ates TRF1 in vitro, and its nuclear overexpression leads to loss of TRF1 and telomere elongation, suggesting that tankyrase1 is a positive regulator of telomere length. In agreement with this proposal, we show that tankyrase1 RNA interference results in telomere shortening proportional to the level of knockdown. Furthermore, we show that a tankyrase1-resistant form of TRF1 enforced normal telomere length control, indicating that tankyrase1 is not required downstream of TRF1 in this pathway. Thus, in human cells, tankyrase1 appears to act upstream of TRF1, promoting telomere elongation through the removal of TRF1. This pathway appears absent from mouse cells. We show that murine TRF1, which lacks the canonical tankyrase1-binding site, is not a substrate for tankyrase1 poly(ADP-ribosyl)sylation in vitro. Furthermore, overexpression of tankyrase1 in mouse nuclei did not remove TRF1 from telomeres and had no detectable effect on other components of mouse shelterin. We propose that the tankyrase1-controlled telomere extension is a human-specific elaboration that allows additional control over telomere length in telomerase positive cells.  相似文献   

19.
Alternative lengthening of telomere (ALT) tumors maintain telomeres by a telomerase-independent mechanism and are characterized by a nuclear structure called the ALT-associated PML body (APB). TRF2 is a component of a telomeric DNA/protein complex called shelterin. However, TRF2 function in ALT cells remains elusive. In telomerase-positive tumor cells, TRF2 inactivation results in telomere de-protection, activation of ATM, and consequent induction of p53-dependent apoptosis. We show that in ALT cells this sequence of events is different. First, TRF2 inactivation/silencing does not induce cell death in p53-proficient ALT cells, but rather triggers cellular senescence. Second, ATM is constitutively activated in ALT cells and colocalizes with TRF2 into APBs. However, it is only following TRF2 silencing that the ATM target p53 is activated. In this context, PML is indispensable for p53-dependent p21 induction. Finally, we find a substantial loss of telomeric DNA upon stable TRF2 knockdown in ALT cells. Overall, we provide insight into the functional consequences of shelterin alterations in ALT cells.  相似文献   

20.
A cancer is a robustly evolving cell population originating from a normal diploid cell. Improper chromosome segregation causes aneuploidy, a driving force of cancer development and malignant progression. Telomeric repeat binding factor 1 (TRF1) has been established as a telomeric protein that negatively regulates telomere elongation by telomerase and promotes efficient DNA replication at telomeres. Intriguingly, overexpression of a mitotic kinase, Aurora-A, compromises efficient microtubule-kinetochore attachment in a TRF1-dependent manner. However, the precise role of TRF1 in mitosis remains elusive. Here we demonstrate that TRF1 is required for the centromeric function of Aurora-B, which ensures proper chromosome segregation. TRF1 depletion abolishes centromeric recruitment of Aurora-B and loosens sister centromere cohesion, resulting in the induction of merotelic kinetochore attachments, lagging chromosomes, and micronuclei. Accordingly, an absence of TRF1 in human and mouse diploid cells induces aneuploidy. These phenomena seem to be telomere independent, because a telomere-unbound TRF1 mutant can suppress the TRF1 knockdown phenotype. These observations indicate that TRF1 regulates the rigidity of the microtubule-kinetochore attachment, contributing to proper chromosome segregation and the maintenance of genomic integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号