首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jin L  Hu X  Feng L 《Journal of neurochemistry》2005,93(5):1251-1261
Neurotrophin 3 (NT3), a member of the neurotrophin family, antagonizes the proliferative effect of fibroblast growth factor 2 (FGF2) on cortical precursors. However, the mechanism by which NT3 inhibits FGF2-induced neural progenitor (NP) cell proliferation is unclear. Here, using an FGF2-dependent rat neurosphere culture system, we found that NT3 inhibits both FGF2-induced neurosphere growth and bromodeoxyuridine (BrdU) incorporation in a dose-dependent manner. U0126, a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, both inhibited FGF2-induced BrdU incorporation, suggesting that the extracellular signal-regulated kinase1/2 (ERK1/2) and PI3K pathways are required for FGF2-induced NP cell proliferation. NT3 significantly inhibited FGF2-induced phosphorylation of Akt and glycogen synthase kinase 3beta (GSK3beta), a downstream kinase of Akt, whereas phosphorylation of ERK1/2 was unaffected. The inhibitory effect of NT3 on FGF2-induced NP cell proliferation was abolished by LY294002, and treatment with SB216763, a specific GSK3 inhibitor, antagonized the NT3 effect, rescuing both neurosphere growth and BrdU incorporation. Moreover, experiments with anti-NT3 antibody revealed that endogenous NT3 also plays a role in inhibiting FGF2-induced NP cell proliferation, and that anti-NT3 antibody enhanced phospho-Akt and phospho-GSK3beta levels in the presence of FGF2. These findings indicate that FGF2-induced NP cell proliferation is inhibited by NT3 via the PI3K/GSK3 pathway.  相似文献   

2.
The aim of this study was to explain the effect and mechanisms of miRNA-30-3p in myocardial ischemia-induced cell apoptosis in vitro and in vivo studies. In the cell experiment, the H9C2 cells were divided into the normal control (NC), and the model, miRNA, and miRNA + phosphatidylinositol 3-kinase (PI3K) inhibitor groups. The cell survival rates of the different groups were measured with the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay kit; the lactate dehydrogenase (LDH), malondialdehyde (MDA) content, and superoxidedimutase (SOD) activity in the bathing medium were assayed for the evaluation of myocardial cell injury. The cell apoptosis rate of different groups was measured with flow cytometry analysis. The relative protein expressions of different cell groups were evaluated by Western blot analysis. In the vivo study, the Sprague-Dawley rats were divided into four groups: the NC group, the model group, miRNA group, and the (miRNA + PI3K inhibitor) group. The pathological observations, cell apoptosis, LDH, SOD, MDA, and relative protein expressions were evaluated with hematoxylin and eosin, enzyme-linked immunosorbent assay, terminal deoxynucleotide transferase dUTP nick-end labeling or immunohistochemical methods. The results show that miRNA-30-3p had the effect of improving cell apoptosis induced by myocardial ischemia in vitro and in vivo studies by the regulation of the PTEN/PI3K/AKT pathway.  相似文献   

3.
We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria.  相似文献   

4.
Constitutive activation of the PI3 kinase/Akt pathway is associated with the neoplastic phenotype of a large number of human tumor cells. As the anti-apoptotic role of the PI3 kinase/Akt pathway has been established, we have examined whether specific blockade of this pathway sensitizes tumor cells to DNA-damaging agent-induced cytotoxicity by enhancing apoptotic cell death. Although a PI3 kinase inhibitor, LY294002, by itself does not induce apoptotic cell death, LY294002 selectively and markedly enhances the apoptosis-inducing efficacy of doxorubicin: such an enhanced cell death is only detected in tumor cells in which the PI3 kinase/Akt pathway is constitutively activated, and it is totally dependent on the functional p53 pathway. These results suggest that the combination of a PI3 kinase/Akt pathway inhibitor and doxorubicin provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the PI3 kinase/Akt pathway is constitutively activated and the p53 pathway is functional.  相似文献   

5.
p53上调凋亡调制物的促凋亡作用   总被引:1,自引:0,他引:1  
p53上调凋亡调制物(p53up-regulated modulator of apoptosis,PUMA)是Bcl-2家族中BH3-only(Bcl-2 homology 3-only)蛋白质家族成员,通过其BH3结构域与所有的Bcl-2抗凋亡蛋白质结合,引发线粒体功能障碍和胱天蛋白酶(caspase)级联反应,诱导细胞凋亡。PUMA被证实在多种病理性应激介导的细胞凋亡中发挥着至关重要的作用,因而成为近年研究的热点。  相似文献   

6.
We have previously reported an aberrant accumulation of activated protein kinase B (PKB), glycogen synthase kinase (GSK)-3beta, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38 and p70 S6 kinase (p70S6K) in neurons bearing neurofibrillary tangles (NFTs) in Alzheimer's disease (AD). However, the mechanism by which these tau candidate kinases are involved in the regulation of p70S6K and GSK-3beta phosphorylation is unknown. In the current study, 100 microM zinc sulfate was used, and influences of various components of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on p70S6K and GSK-3beta phosphorylation have been investigated in serum-deprived SH-SY5Y neuroblastoma cells. We found that zinc could induce an increase of phosphorylated (p) p70S6K, p-PKB, p-GSK-3beta, p-ERK1/2, p-JNK and p-p38, especially in long-term treatment (4-8 h). Treatment with different inhibitors including rapamycin, wortmannin, LY294002, and U0126, and their combinations, indicated that phosphorylation of p70S6K and GSK-3beta is regulated by rapamycin-dependent, PI3K and MAPK pathways. Furthermore, phosphorylation of p70S6K and GSK-3beta affected levels of tau unphosphorylated at the Tau-1 site and phosphorylated at the PHF-1 site, and p70S6K phosphorylation affected the total tau level. Thus, 100 microM zinc might activate PKB, GSK-3beta, ERK1/2, JNK, p38 and p70S6K, that are consequently involved in tau changes in SH-SY5Y cells.  相似文献   

7.
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is an important lipid second messenger that mediates various cell responses. We have searched for the nuclear PIP3 binding proteins using PIP3 analogue beads. A 33 kD protein was detected in this method, which was identified as ribosomal protein S3a by the mass spectrometric analysis. The recombinant S3a protein bound specifically to PIP3. S3a localized not only in the cytosol but also in the nucleus. Interestingly, not cytosolic but nuclear S3a bound to PIP3, suggesting different roles of S3a in the cytosol and the nucleus. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Superoxide production by NADPH oxidase is essential for the bactericidal properties of phagocytes. Phosphorylation of p47(phox), one of the cytosolic components of NADPH oxidase, is a crucial step of the oxidase activation. Some evidences suggest that phosphoinositide 3-kinase (PI3K) is involved in p47(phox) phosphorylation, but it has not been fully understood how PI3K regulates it. The aim of this study was to examine the mechanism underlying the PI3K regulation of p47(phox) phosphorylation. Pharmacological inhibition of PI3K attenuated both fMLP-stimulated p47(phox) phosphorylation and NADPH oxidase activity in HL-60 cells differentiated to a neutrophil-like phenotype. Although fMLP elicited Akt activation in a PI3K-dependent manner, an Akt inhibitor had no effect on the oxidase activity triggered by fMLP. In vitro kinase assay revealed that Akt was unable to catalyze p47(phox) phosphorylation. Interestingly, the activation of cPKC and PKCdelta after fMLP stimulation was dependent on PI3K. Furthermore, PI3K inhibitors reduced the activation of phospholipase Cgamma2 without affecting tyrosine phosphorylation on it. These results suggest that PI3K regulates the phosphorylation of NADPH oxidase component p47(phox) by controlling diacylglycerol-dependent PKCs but not Akt.  相似文献   

9.
10.
Minocycline has been shown to have remarkably neuroprotective qualities, but underlying mechanisms remain elusive. We reported here the robust neuroprotection by minocycline against glutamate-induced apoptosis through regulations of p38 and Akt pathways. Pre-treatment of cerebellar granule neurons (CGNs) with minocycline (10-100 microm) elicited a dose-dependent reduction of glutamate excitotoxicity and blocked glutamate-induced nuclear condensation and DNA fragmentations. Using patch-clamping and fluorescence Ca2+ imaging techniques, it was found that minocycline neither blocked NMDA receptors, nor reduced glutamate-caused rises in intracellular Ca2+. Instead, confirmed by immunoblots, minocycline in vivo and in vitro was shown to directly inhibit the activation of p38 caused by glutamate. A p38-specific inhibitor, SB203580, also attenuated glutamate excitotoxicity. Furthermore, the neuroprotective effects of minocycline were blocked by phosphatidylinositol 3-kinase (PI3-K) inhibitors LY294002 and wortmannin, while pharmacologic inhibition of glycogen synthase kinase 3beta (GSK3beta) attenuated glutamate-induced apoptosis. In addition, immunoblots revealed that minocycline reversed the suppression of phosphorylated Akt and GSK3beta caused by glutamate, as were abolished by PI3-K inhibitors. These results demonstrate that minocycline prevents glutamate-induced apoptosis in CGNs by directly inhibiting p38 activity and maintaining the activation of PI3-K/Akt pathway, which offers a novel modality as to how the drug exerts protective effects.  相似文献   

11.
ik3-2 is a close relative to ik3-1/Cables, an associator with cdk3 and cdk5. ik3-1/Cables has been identified to be a candidate tumor suppressor for colon and head/neck cancers. In agreement, it has been pointed out that ik3-1/Cables is a regulator for both p53- and p73-induced apoptosis [J. Biol. Chem. 277 (2002) 2951] although ectopic expression of ik3-1/Cables does not induce apoptosis. Here we show that adenovirus-mediated overexpression of ik3-2 results in apoptosis of p53-intact U2OS cells. ik3-2 binds to p53 in vivo and ectopic coexpression of ik3-2 enhances apoptosis induced by adenovirus-mediated expression of p53. Furthermore, ectopic expression of ik3-2 results in apoptosis of primary p53/Mdm2- and p53/ARF-null mouse embryo fibroblasts, indicating that ik3-2-induced apoptosis is partially p53-independent. Both the highly conserved C-terminal cyclin box-homologous domain (ik3-2-C) and the N-terminal region consisting of 70 amino acids (ik3-2-N) are responsible for ik3-2-mediated enhancement of p53-induced apoptosis. In contrast, ik3-2-induced p53-independent apoptosis is mediated through ik3-2-N. We thus identified ik3-2 as a proapoptotic factor involved in both p53-mediated and p53-independent apoptotic pathways.  相似文献   

12.
13.
Ruk/CIN85/SETA/CD2BP3 and CD2AP/CMS/METS-1 comprise a new family of proteins involved in such fundamental processes as clustering of receptors and rearrangement of the cytoskeleton in regions of specialised cell-cell contacts, ligand-activated internalisation and targeting to lysosome degradation pathway of receptor tyrosine kinases, and apoptotic cell death. As typical adapter proteins they execute these functions by interacting with other signalling molecules via multiple protein-protein interaction interfaces: SH3 domains, Pro-rich region and coiled-coil domain. It has been previously demonstrated that Ruk is able to interact with the p85alpha regulatory subunit of PI 3-kinase and that the SH3 domain of p85alpha is required for this interaction. However, later observations hinted at a more complex mechanism than simple one-way SH3-Pro-rich interaction. Because interaction with p85alpha was suggested to be important for pro-apoptotic activity of the long isoform of Ruk, Ruk(l)/CIN85, we carried out detailed studies of the mechanism of this interaction and demonstrated that multiple domains are involved; SH3 domains of Ruk are required and sufficient for efficient interaction with full-length p85alpha but the SH3 domain of p85alpha is vital for their "activation" by ousting them from intramolecular interaction with the Pro-rich region of Ruk. Our data also suggest that homodimerisation via C-terminal coiled-coil domain affects both intra- and intermolecular interactions of Ruk proteins.  相似文献   

14.
Drugs targeting the histamine H(3) receptor (H(3)R) are suggested to be beneficial for the treatment of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. The H(3)R activates G(i/o)-proteins to inhibit adenylyl cyclase activity and modulates phospholipase A(2) and MAPK activity. Herein we show that, in transfected SK-N-MC cells, the H(3)R modulates the activity of the Akt/Glycogen synthase kinase 3beta (GSK-3beta) axis both in a constitutive and agonist-dependent fashion. H(3)R stimulation with the H(3)R agonist immepip induces the phosphorylation of both Ser473 and Thr308 on Akt, a serine/threonine kinase that is important for neuronal development and function. The H(3)R-mediated activation of Akt can be inhibited by the H(3)R inverse agonist thioperamide, and by Wortmannin, LY294002 and PTX, suggesting the observed Akt activation occurs via a G(i/o)-mediated activation of phosphoinositide-3-kinase. H(3)R activation also results in the phosphorylation of Ser9 on GSK-3beta, which acts downstream of Akt and has a prominent role in brain function. In addition, we show the H(3)R-mediated phosphorylation of Akt at Ser473 to occur in primary rat cortical neurons and in rat brain slices. The discovery of this signaling property of the H(3)R adds new understanding to the roles of histamine and the H(3)R in brain function and pathology.  相似文献   

15.
红细胞生成素作为临床上最常用的纠正贫血的药物,近年随着研究的不断深入,其非造血的组织器官保护作用逐渐被认识。PI3K/AKT通路作为介导红细胞生成素生物学作用的通路之一,在红细胞生成素对各种急慢性肾脏疾病的保护过程中占据重要地位。本文就PI3K/AKT通路在红细胞生成素肾保护中的作用方面的研究进展作一综述。  相似文献   

16.
Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein-tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein-tagged fragments of p85 we show that binding to the receptor requires the NH(2)-terminal part of the protein as well as its SH2 domains.  相似文献   

17.
18.
19.
20.
Non-receptor tyrosine kinase Src is a master regulator of cell proliferation. Hyperactive Src is a potent oncogene and a driver of cellular transformation and carcinogenesis. Homeodomain-interacting protein kinase 2 (HIPK2) is a tumor suppressor mediating growth suppression and apoptosis upon genotoxic stress through phosphorylation of p53 at Ser46. Here we show that Src phosphorylates HIPK2 and changes its subcellular localization. Using mass spectrometry we identified 9 Src-mediated Tyr-phosphorylation sites within HIPK2, 5 of them positioned in the kinase domain. By means of a phosphorylation-specific antibody we confirm that Src mediates phosphorylation of HIPK2 at Tyr354. We demonstrate that ectopic expression of Src increases the half-life of HIPK2 by interfering with Siah-1-mediated HIPK2 degradation. Moreover, we find that hyperactive Src binds HIPK2 and redistributes HIPK2 from the cell nucleus to the cytoplasm, where both kinases partially colocalize. Accordingly, we find that hyperactive Src decreases chemotherapeutic drug-induced p53 Ser46 phosphorylation and apoptosis activation. Together, our results suggest that Src kinase suppresses the apoptotic p53 pathway by phosphorylating HIPK2 and relocalizing the kinase to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号