首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inflammasome is an emerging new pathway in innate immune defense against microbial infection or endogenous danger signals. The inflammasome stimulates activation of inflammatory caspases, mainly caspase-1. Caspase-1 activation is responsible for processing and secretion of IL-1β and IL-18 as well as for inducing macrophage pyroptotic death. Assembly of the large cytoplasmic inflammasome complex is thought to be mediated by members of NOD-like receptor (NLR) family. While functions of most of the NLR proteins remain to be defined, several NLR proteins including NLRC4 have been shown to assemble distinct inflammasome complexes. These inflammasome pathways, particularly the NLRC4 inflammasome, play a critical role in sensing and restricting diverse types of bacterial infections. Here we review recent advances in defining the exact bacterial ligands and the ligand-binding receptors involved in NLRC4 inflammasome activation. Implications of the discovery of the NAIP family of inflammasome receptors for bacterial flagellin and type III secretion apparatus on future inflammasome and bacterial infection studies are also discussed.  相似文献   

2.
3.
NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection. NLRC5, the largest member of the NLR family, has recently attracted much attention. However, in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways. The in vivo function of NLRC5 remains unknown. Here, we report that NLRC5 is a critical regulator of host defense against intracellular pathogens in vivo. NLRC5 was specifically required for the expression of genes involved in MHC class I antigen presentation. NLRC5-deficient mice showed a profound defect in the expression of MHC class I genes and a concomitant failure to activate L. monocytogenes-specific CD8+ T cell responses, including activation, proliferation and cytotoxicity, and the mutant mice were more susceptible to the pathogen infection. NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice. However, NLRC5 was dispensable for pathogen-induced expression of NF-κB-dependent pro-inflammatory genes as well as type I interferon genes. Thus, NLRC5 critically regulates MHC class I antigen presentation to control intracellular pathogen infection.  相似文献   

4.
A functional role for Nlrp6 in intestinal inflammation and tumorigenesis   总被引:1,自引:0,他引:1  
The nucleotide-binding oligomerization domain-like receptor (NLR) family member, Nlrp6, has been implicated in inflammasome signaling to activate caspase-1, which is essential for the production of mature IL-1β and IL-18. However, a function for Nlrp6 in vivo has never been demonstrated. Due to the relative high expression of Nlrp6 in intestinal tissue, we hypothesized that Nlrp6 has a role in intestinal homeostasis. Indeed, Nlrp6-deficient mice are more susceptible to chemically induced colitis as well as colitis-induced tumorigenesis than wild-type (WT) mice. Nlrp6-deficient mice exhibited significantly more inflammation within the colon than WT mice after dextran sulfate sodium treatment. Their inability to resolve inflammation and repair damaged epithelium as efficiently as WT mice resulted in prolonged increases in epithelial proliferative activity that likely underlie the increased propensity for tumors in these mice during chronic inflammation. We further show that the activity of Nlrp6 in hematopoietic cells is critical for protection against inflammation-related colon tumorigenesis. This study highlights the importance of NLR function in maintaining intestinal homeostasis to prevent the development of aberrant inflammation and tumor development within the colon.  相似文献   

5.
The nucleotide-binding domain leucine-rich repeat-containing proteins, NLRs, are intracellular sensors of pathogen-associated molecular patterns and damage-associated molecular patterns. A subgroup of NLRs can form inflammasome complexes, which facilitate the maturation of procaspase 1 to caspase 1, leading to IL-1β and IL-18 cleavage and secretion. NLRC5 is predominantly expressed in hematopoietic cells and has not been studied for inflammasome function. RNA interference-mediated knockdown of NLRC5 nearly eliminated caspase 1, IL-1β, and IL-18 processing in response to bacterial infection, pathogen-associated molecular patterns, and damage-associated molecular patterns. This was confirmed in primary human monocytic cells. NLRC5, together with procaspase 1, pro-IL-1β, and the inflammasome adaptor ASC, reconstituted inflammasome activity that showed cooperativity with NLRP3. The range of pathogens that activate NLRC5 inflammasome overlaps with those that activate NLRP3. Furthermore, NLRC5 biochemically associates with NLRP3 in a nucleotide-binding domain-dependent but leucine-rich repeat-inhibitory fashion. These results invoke a model in which NLRC5 interacts with NLRP3 to cooperatively activate the inflammasome.  相似文献   

6.
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is critical for caspase-1 activation and the proteolytic processing of pro-IL-1β. However, the mechanism that regulates NLRP3 inflammasome activation remains unclear. In this paper, we demonstrate that tripartite-motif protein 30 (TRIM30) negatively regulates NLRP3 inflammasome activation. After stimulation with ATP, an agonist of the NLRP3 inflammasome, knockdown of TRIM30 enhanced caspase-1 activation and increased production of IL-1β in both J774 cells and bone marrow-derived macrophages. Similarly with ATP, knockdown of TRIM30 increased caspase-1 activation and IL-1β production triggered by other NLRP3 inflammasome agonists, including nigericin, monosodium urate, and silica. Production of reactive oxygen species was increased in TRIM30 knockdown cells, and its increase was required for enhanced NLRP3 inflammasome activation, because antioxidant treatment blocked excess IL-1β production. Conversely, overexpression of TRIM30 attenuated reactive oxygen species production and NLRP3 inflammasome activation. Finally, in a crystal-induced NLRP3 inflammasome-dependent peritonitis model, monosodium urate-induced neutrophil flux and IL-1β production was reduced significantly in TRIM30 transgenic mice as compared with that in their nontransgenic littermates. Taken together, our results indicate that TRIM30 is a negative regulator of NLRP3 inflammasome activation and provide insights into the role of TRIM30 in maintaining inflammatory responses.  相似文献   

7.
Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and other cell types and causes melioidosis. The interaction of B. pseudomallei with the inflammasome and the role of pyroptosis, IL-1β, and IL-18 during melioidosis have not been investigated in detail. Here we show that the Nod-like receptors (NLR) NLRP3 and NLRC4 differentially regulate pyroptosis and production of IL-1β and IL-18 and are critical for inflammasome-mediated resistance to melioidosis. In vitro production of IL-1β by macrophages or dendritic cells infected with B. pseudomallei was dependent on NLRC4 and NLRP3 while pyroptosis required only NLRC4. Mice deficient in the inflammasome components ASC, caspase-1, NLRC4, and NLRP3, were dramatically more susceptible to lung infection with B. pseudomallei than WT mice. The heightened susceptibility of Nlrp3-/- mice was due to decreased production of IL-18 and IL-1β. In contrast, Nlrc4-/- mice produced IL-1β and IL-18 in higher amount than WT mice and their high susceptibility was due to decreased pyroptosis and consequently higher bacterial burdens. Analyses of IL-18-deficient mice revealed that IL-18 is essential for survival primarily because of its ability to induce IFNγ production. In contrast, studies using IL-1RI-deficient mice or WT mice treated with either IL-1β or IL-1 receptor agonist revealed that IL-1β has deleterious effects during melioidosis. The detrimental role of IL-1β appeared to be due, in part, to excessive recruitment of neutrophils to the lung. Because neutrophils do not express NLRC4 and therefore fail to undergo pyroptosis, they may be permissive to B. pseudomallei intracellular growth. Administration of neutrophil-recruitment inhibitors IL-1ra or the CXCR2 neutrophil chemokine receptor antagonist antileukinate protected Nlrc4-/- mice from lethal doses of B. pseudomallei and decreased systemic dissemination of bacteria. Thus, the NLRP3 and NLRC4 inflammasomes have non-redundant protective roles in melioidosis: NLRC4 regulates pyroptosis while NLRP3 regulates production of protective IL-18 and deleterious IL-1β.  相似文献   

8.
9.
Bacterial flagellin is critical to mediate NLRC4 inflammasome-dependent caspase-1 activation. However, Shigella flexneri, a nonflagellated bacterium, and a flagellin (fliC) knockout strain of Pseudomonas aeruginosa are known to activate NLRC4 in bone marrow-derived macrophages. Furthermore, the flagellin-deficient fliC strain of P. aeruginosa was used in a mouse model of peritonitis to show the requirement of NLRC4. In a model of pulmonary P. aeruginosa infection, flagellin was shown to be essential for the induction of NLRC4-dependent caspase-1 activation. Moreover, in all P. aeruginosa studies, IL-1β production was attenuated in NLRC4(-/-) mice; however, the role of IL-1β in NLRC4-mediated innate immunity in the lungs against a nonflagellated bacterium was not explored. In this article, we report that NLRC4 is important for host survival and bacterial clearance, as well as neutrophil-mediated inflammation in the lungs following Klebsiella pneumoniae infection. NLRC4 is essential for K. pneumoniae-induced production of IL-1β, IL-17A, and neutrophil chemoattractants (keratinocyte cell-derived chemokines, MIP-2, and LPS-induced CXC chemokines) in the lungs. NLRC4 signaling in hematopoietic cells contributes to K. pneumoniae-induced lung inflammation. Furthermore, exogenous IL-1β, but not IL-18 or IL-17A, partially rescued survival, neutrophil accumulation, and cytokine/chemokine expression in the lungs of NLRC4(-/-) mice following infectious challenge. Furthermore, IL-1R1(-/-) mice displayed a decrease in neutrophilic inflammation in the lungs postinfection. Taken together, these findings provide novel insights into the role of NLRC4 in host defense against K. pneumoniae infection.  相似文献   

10.
IL-1β plays a critical role in promoting IL-17 production by γδ and CD4 T cells. However, IL-1-targeted drugs, although effective against autoinflammatory diseases, are less effective against autoimmune diseases. Conversely, gain-of-function mutations in the NLRP3 inflammasome complex are associated with enhanced IL-1β and IL-18 production and Th17 responses. In this study, we examined the role of caspase-1-processed cytokines in IL-17 production and in induction of experimental autoimmune encephalomyelitis (EAE). Killed Mycobacterium tuberculosis, the immunostimulatory component in CFA used for inducing EAE, stimulated IL-1β and IL-18 production by dendritic cells through activation of the inflammasome complex and caspase-1. Dendritic cells stimulated with M. tuberculosis and myelin oligodendrocyte glycoprotein promoted IL-17 production by T cells and induced EAE following transfer to naive mice, and this was suppressed by a caspase-1 inhibitor and reversed by administration of IL-1β or IL-18. Direct injection of the caspase-1 inhibitor suppressed IL-17 production by CD4 T cells and γδ T cells in vivo and attenuated the clinical signs of EAE. γδ T cells expressed high levels of IL-18R and the combination of IL-18 and IL-23, as with IL-1β and IL-23, stimulated IL-17 production by γδ T cells, but also from CD4 T cells, in the absence of TCR engagement. Our findings demonstrate that caspase-1-processed cytokines IL-1β and IL-18 not only promote autoimmunity by stimulating innate IL-17 production by T cells but also reveal redundancy in the functions of IL-1β and IL-18, suggesting that caspase-1 or the inflammasome may be an important drug target for autoimmune diseases.  相似文献   

11.
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.  相似文献   

12.
IL-1β has been implicated in the development of oviduct pathology during Chlamydia muridarum genital infection in the mouse model. The goal of this study was to characterize the role of IL-1 signaling and the inflammasome-activation pathways during genital chlamydial infection. Compared with control mice, IL-1R-deficient mice displayed delayed clearance and increased chlamydial colonization. Consistent with the role for IL-1 signaling in infection clearance, mice deficient for the IL-1R antagonist cleared infection at a faster rate. Despite increased infection, IL-1R-deficient mice had significantly reduced oviduct pathology, which was associated with decreased numbers of neutrophils, but more macrophages, in the genital tract. IL-1β secretion is dependent on caspase-1 and apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) inflammasome during in vitro infection of primed macrophages with C. muridarum. To investigate the role of inflammasome components during in vivo genital infection, mice lacking NLRP3, NLRC4, and ASC were tested and found to display no reduction in oviduct pathology compared with control mice. Mice deficient for ASC displayed a prolonged course of infection, which was associated with reduced T cell recruitment and proliferation. Further, ASC-deficient mice displayed normal levels of IL-1β in genital secretions. However, a significant decrease in caspase-1-dependent IL-18 was observed in both ASC- and NLRP3-deficient mice. These data demonstrate a major role for IL-1 signaling, but a limited role for the inflammasome pathway, in IL-1β secretion and development of oviduct pathology during genital chlamydial infection. The data also suggest an IL-1-independent role for ASC in adaptive immunity during genital chlamydial infection.  相似文献   

13.
Alum is the only adjuvant approved for routine use in humans, although the basis for its adjuvanticity remains poorly understood. We have recently shown that alum activates caspase-1 and induces secretion of mature IL-1beta and IL-18. In this study we show that, in human and mouse macrophages, alum-induced secretion of IL-1beta, IL-18, and IL-33 is mediated by the NLR (nucleotide-binding domain leucine-rich repeat-containing) protein NLRP3 and its adaptor ASC, but not by NLRC4. Other particulate adjuvants, such as QuilA and chitosan, induce inflammasome activation in a NLRP3-dependent fashion, suggesting that activation of the NLRP3-inflammasome may be a common mechanism of action of particulate adjuvants. Importantly, we demonstrate that Ag-specific Ab production elicited by vaccines that contain alum is significantly impaired in NLRP3-deficient mice. Our results demonstrate for the first time a role for the NLRP3-inflammasome during development of the immune response elicited by alum-enhanced vaccination and suggest that therapeutic intervention aimed at NLRP3 may improve adjuvant efficacy.  相似文献   

14.
Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1β production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection.  相似文献   

15.
Vesicular stomatitis virus (VSV) vectors that express heterologous antigens have shown promise as vaccines in preclinical studies. The efficacy of VSV-based vaccines can be improved by engineering vectors that enhance innate immune responses. We previously generated a VSV vaccine vector that incorporates two enhancing strategies: an M protein mutation (M51R) that prevents the virus from suppressing host antiviral responses and a gene encoding bacterial flagellin (M51R-F vector). The rationale was that intracellular expression of flagellin would activate innate immune pathways in addition to those activated by virus alone. This was tested with dendritic cells (DCs) from mice containing deletions in key signaling molecules. Infection of DC with either M51R or M51R-F vector induced the production of interleukin-12 (IL-12) and IL-6 and increased surface expression of T cell costimulatory molecules. These responses were dramatically reduced in DCs from IPS-1−/− mice. Infection with M51R-F vector also induced the production of IL-1β. In addition, in approximately half of the DCs, M51R-F vector induced pyroptosis, a proinflammatory-type of cell death. These responses to flagellin were ablated in DCs from NLRC4−/− mice but not Toll-like receptor 5-deficient (TLR5−/−) mice, indicating that they resulted from inflammasome activation. These results demonstrate that flagellin induces additional innate immune mechanisms over those induced by VSV alone.  相似文献   

16.
The NOD-like receptor (NLR) family members are cytosolic sensors of microbial components and danger signals. A subset of NLRs control inflammasome assembly that results in caspase-1 activation and, in turn, IL-1β and IL-18 production. Excessive inflammasome activation can cause autoinflammatory disorders, including the hereditary periodic fevers. Autoinflammatory and autoimmune diseases form a disease spectrum of aberrant, immune-mediated inflammation against self, through innate and adaptive immunity. However, the role of inflammasomes in autoimmune disease is less clear than in autoinflammation, despite the numerous effects IL-1β and IL-18 can have on shaping adaptive immunity. We summarize the role of inflammasomes in autoimmune disorders, highlight the need for a better understanding of inflammasomes in these conditions and offer suggestions for future research directions.  相似文献   

17.
Inflammasomes are cytosolic protein complexes that regulate caspase-1 activation and the secretion of interleukin-1β (IL-1β) and IL-18. Several different inflammasome complexes have been identified, but the NLRP3 inflammasome is particularly notable because of its central role in diseases of inflammation. Recent work has demonstrated an essential role for the NLRP3 inflammasome in host defense against influenza virus. We show here that two other RNA viruses, encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV), activate the NLRP3 inflammasome in dendritic cells and macrophages through a mechanism requiring viral replication. Inflammasome activation in response to both viruses does not require MDA5 or RIG-I signaling. Despite the ability of the NLRP3 inflammasome to detect EMCV and VSV, wild-type and caspase-1-deficient mice were equally susceptible to infection with both viruses. These findings indicate that the NLRP3 inflammasome may be a common pathway for RNA virus detection, but its precise role in the host response may be variable.  相似文献   

18.
19.
Members of the nucleotide-binding, oligomerization domain (NOD)-like receptor (NLR) proteins assemble into a multiprotein platform, known as the inflammasome, to induce caspase-1 activation followed by the subsequent secretion of IL-1β and IL-18. In this review, we focus on the role of NLRs in inflammasome activation as part of the host defence against bacterial pathogens. One of activators of the NLRC4 inflammasome is bacterial flagellin secreted through type III or IV secretion systems, which are important for the pathogenicity of many Gram-negative bacteria. The NLRP3 inflammasome is mainly activated by a large number of bacterial pore-forming toxins. Despite our knowledge of inflammasome activation upon bacterial infection, the function of antibacterial defence under in vivo conditions remains to be elucidated. Further understanding of NLR function should provide new insights into the mechanisms of host pro-inflammatory responses and the pathogenesis of bacterial infections.  相似文献   

20.
Orientia tsutsugamushi, a causative agent of scrub typhus, is an obligate intracellular bacterium, which escapes from the endo/phagosome and replicates in the host cytoplasm. O. tsutsugamushi infection induces production of pro-inflammatory mediators including interleukin-1β (IL-1β), which is secreted mainly from macrophages upon cytosolic stimuli by activating cysteine protease caspase-1 within a complex called the inflammasome, and is a key player in initiating and maintaining the inflammatory response. However, the mechanism for IL-1β maturation upon O. tsutsugamushi infection has not been identified. In this study, we show that IL-1 receptor signaling is required for efficient host protection from O. tsutsugamushi infection. Live Orientia, but not heat- or UV-inactivated Orientia, activates the inflammasome through active bacterial uptake and endo/phagosomal maturation. Furthermore, Orientia-stimulated secretion of IL-1β and activation of caspase-1 are ASC- and caspase-1- dependent since IL-1β production was impaired in Asc- and caspase-1-deficient macrophages but not in Nlrp3-, Nlrc4- and Aim2-deficient macrophages. Therefore, live O. tsutsugamushi triggers ASC inflammasome activation leading to IL-1β production, which is a critical innate immune response for effective host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号