首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang J  Liang JY  Li P  Pan YJ  Qiu PY  Zhang J  Hao F  Wang DX 《Peptides》2011,32(6):1255-1261
Periaqueductal gray (PAG) plays a very important role in pain modulation through endogenous opiate peptides including leucine-enkephalin (L-Ek), methionine-enkephalin (M-Ek), β-endorphin (β-Ep) and dynorphin A1-13 (DynA1-13). Our pervious study has demonstrated that intra-PAG injection of oxytocin (OXT) increases the pain threshold, and local administration of OXT receptor antagonist decreases the pain threshold, in which the antinociceptive role of OXT can be reversed by pre-PAG administration of OXT receptor antagonist. The experiment was designed to investigate the effect of OXT on endogenous opiate peptides in the rat PAG during the pain process. The results showed that (1) the concentrations of OXT, L-Ek, M-Ek and β-Ep, not DynA1-13 in the PAG perfusion liquid were increased after the pain stimulation; (2) the concentrations of L-Ek, M-Ek and β-Ep, not DynA1-13 in the PAG perfusion liquid were decreased by the OXT receptor antagonist; (3) the increased pain threshold induced by the OXT was attenuated by naloxone, an opiate receptor antagonist; and (4) the concentrations of L-Ek, M-Ek and β-Ep, not DynA1-13 in the PAG perfusion liquid were increased by exogenous OXT administration. The data suggested that OXT in the PAG could influence the L-Ek, M-Ek and β-Ep rather than DynA1-13 to participate in pain modulation, i.e. OXT in the PAG participate in pain modulation by influencing the L-Ek, M-Ek and β-Ep rather than DynA1-13.  相似文献   

2.
Yang J  Yang Y  Xu HT  Chen JM  Liu WY  Lin BC 《Regulatory peptides》2007,142(1-2):29-36
Previous study has proven that microinjection of arginine vasopressin (AVP) into periaqueductal gray (PAG) raises the pain threshold, in which the antinociceptive effect of AVP can be reversed by PAG pretreatment with V2 rather than V1 or opiate receptor antagonist. The present work investigated the AVP effect on endogenous opiate peptides, oxytocin (OXT) and classical neurotransmitters in the rat PAG. The results showed that AVP elevated the concentrations of leucine-enkephalin (L-Ek), methionine-enkephalin (M-Ek) and beta-endorphin (beta-Ep), but did not change the concentrations of dynorphinA(1-13) (DynA(1-13)), OXT, classical neurotransmitters including achetylcholine (Ach), choline (Ch), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine (DA), norepinephrine (NE) and epinephrine (E), and their metabolic products in PAG perfusion liquid. Pain stimulation increased the concentrations of AVP, L-EK, M-Ek, beta-Ep, 5-HT and 5-HIAA (5-HT metabolic product), but did not influence the concentrations of DynA(1-13), OXT, the other classical neurotransmitters and their metabolic products. PAG pretreatment with naloxone - an opiate receptor antagonist completely attenuated the pain threshold increase induced by PAG administration of AVP, but local pretreatment of OXT or classical neurotransmitter receptor antagonist did not influence the pain threshold increase induced by PAG administration of AVP. The data suggested that AVP in PAG could induce the local release of enkephalin and endorphin rather than dynophin, OXT and classical neurotransmitters to participate in pain modulation.  相似文献   

3.
Yang J  Pan YJ  Zhao Y  Qiu PY  Lu L  Li P  Chen F  Yan XQ  Wang DX 《Peptides》2011,32(10):2104-2107
Our previous studies have demonstrated that oxytocin (OXT) in the central nervous system plays a role in pain modulation. Many studies have found that caudate nucleus (CdN) enriches OXT and OXT receptors by the methods of historadioautograph and gene expression. The communication was designed to investigate OXT effect in the rat CdN on pain modulation. The results showed that (1) intra-CdN microinjection of OXT receptor antagonist, desGly-NH2, d(CH2)5[d-Tyr2, Thr-sup-4]OVT decreased the pain threshold, whereas the local administration of OXT increased the pain threshold in a dose-dependent manner; (2) OXT receptor antagonist can attenuate the analgesic role induced intra-CdN administration of OXT; and (3) pain stimulation could increase OXT concentration in the CdN perfusion liquid. The data suggested that OXT in the CdN was involved in this pain process via OXT receptors.  相似文献   

4.
Yang J  Chen JM  Liu WY  Song CY  Lin BC 《Regulatory peptides》2006,137(3):156-161
Our previous study has proven that central arginine vasopressin (AVP) plays an important role in antinociception, and pain stimulation raises AVP concentration in the periaqueductal gray (PAG). The nociceptive effect of AVP in PAG was investigated in the rat. The results showed that microinjection of AVP into PAG increased pain threshold, whereas microinjection of V2 receptor antagonist-d(CH2)5[d-Ile2, Ile4, Ala9-NH2]AVP into PAG decreased pain threshold in a dose-dependent manner, but local administration of V1 receptor antagonist-d(CH2)5Tyr(Me)AVP did not change pain threshold; Pain stimulation elevated AVP, Leucine-enkephalin (L-Ek), Methionine-enkephalin (M-Ek) and beta-endorphin (beta-Ep), not dynorphinA(1-13) (DynA(1-13)) concentrations in PAG perfuse liquid; PAG pre-treatment with naloxone, an opiate receptor antagonist or V2 receptor antagonist completely reversed AVP-induced increase in pain threshold, however, PAG pre-treatment with V1 receptor antagonist did not influence this effect of AVP administration. The data suggest that AVP in the PAG, through V2 rather than V1 receptor, regulates antinociception, which progress relates to enkephalin and endorphin.  相似文献   

5.
Yang J  Liang JY  Zhang XY  Qiu PY  Pan YJ  Li P  Zhang J  Hao F  Wang DX  Yan FL 《Peptides》2011,32(5):1042-1046
Our pervious study has demonstrated that the hypothalamic supraoptic nucleus (SON) plays a role in pain modulation. Oxytocin (OXT) and arginine vasopressin (AVP) are the important hormones synthesized and secreted by the SON. The experiment was designed to investigate which hormone was relating with the antinociceptive role of the SON in the rat. The results showed that (1) microinjection of l-glutamate sodium into the SON increased OXT and AVP concentrations in the SON perfusion liquid, (2) pain stimulation induces OXT, but not AVP release in the SON, and (3) intraventricular injection (pre-treatment) with OXT antiserum could inhibit the pain threshold increase induced by SON injection of l-glutamate sodium, but administration of AVP antiserum did not influence the antinociceptive role of SON stimulation. The data suggested that the antinociceptive role of the SON relates to OXT rather than AVP.  相似文献   

6.
ABSTRACT: BACKGROUND: Metabotropic glutamate receptors (mGluRs) have been identified as significant analgesic targets. Systemic treatments with inhibitors of the enzymes that inactivate the peptide transmitter N-acetylaspartylglutamate (NAAG), an mGluR3 agonist, have an analgesia-like effect in rat models of inflammatory and neuropathic pain. The goal of this study was to begin defining locations within the central pain pathway at which NAAG activation of its receptor mediates this effect. RESULTS: NAAG immunoreactivity was found in neurons in two brain regions that mediate nociceptive processing, the periaqueductal gray (PAG) and the rostral ventromedial medulla (RVM). Microinjection of the NAAG peptidase inhibitor ZJ43 into the PAG contralateral, but not ipsilateral, to the formalin injected footpad reduced the rapid and slow phases of the nociceptive response in a dose-dependent manner. ZJ43 injected into the RVM also reduced the rapid and slow phase of the response. The group II mGluR antagonist LY341495 blocked these effects of ZJ43 on the PAG and RVM. NAAG peptidase inhibition in the PAG and RVM did not affect the thermal withdrawal response in the hot plate test. Footpad inflammation also induced a significant increase in glutamate release in the PAG. Systemic injection of ZJ43 increased NAAG levels in the PAG and RVM and blocked the inflammation-induced increase in glutamate release in the PAG. CONCLUSION: These data demonstrate a behavioral and neurochemical role for NAAG in the PAG and RVM in regulating the spinal motor response to inflammation and that NAAG peptidase inhibition has potential as an approach to treating inflammatory pain via either the ascending (PAG) and/or the descending pain pathways (PAG and RVM) that warrants further study.  相似文献   

7.
The aim of this study was to investigate the expression of prostaglandin EP1 receptor within the ventrolateral periaqueductal grey (VL PAG). The role of VL PAG EP1 receptor in controlling thermonociception and rostral ventromedial medulla (RVM) activity in healthy and neuropathic rats was also examined. EP1 receptor was indeed found to be expressed within the VL PAG and co-localized with vesicular GABA transporter. Intra-VL PAG microinjection of ONO-DI-004, a selective EP1 receptor agonist, dose-dependently reduced tail flick latency as well as respectively increasing and decreasing the spontaneous activity of ON and OFF cells. Furthermore, it increased the ON cell burst and OFF cell pause. Intra-VL PAG prostaglandin E2 (PGE2) behaved similarly to ONO-DI-004. The effects of ONO-DI-004 and PGE2 were antagonized by intra-VL PAG L335677, a selective EP1 receptor antagonist. L335677 dose-dependently increased the tail flick latency and ongoing activity of the OFF cells, while reducing the ongoing ON cell activity. It also decreased the ON cell burst and OFF cell pause. In neuropathic rats using spare nerve injury (SNI) of the sciatic nerve model, EP1 receptor expression decreased in the VL PAG. However, ONO-DI-004 and L335677 were able to alter pain responses and ON and OFF cell activity, as they did in healthy animals. Collectively, these data show that within the VL PAG, EP1 receptor has a facilitatory effect on the nociceptive response and consistently affects RVM neuron activity. Thus, the blockade of EP1 receptor in the VL PAG leads to antinociception in neuropathic pain conditions, despite its down-regulation. The expression of EP1 receptor on GABAergic neurons is consistent with an EP1 receptor blockade-induced disinhibition of the antinociceptive descending pathway at VL PAG level.  相似文献   

8.
The neuropeptide oxytocin (OXT) contributes to the regulation of diverse cognitive and physiological functions including nociception. Indeed, OXT has been reported to be analgesic when administered directly into the brain, the spinal cord, or systemically. Although many authors have reported the analgesic effects of OXT, its mechanism has not been well elucidated. Recently, it has been also hypothesize that OXT, increasing intracellular concentration of calcium, could regulate the production of mediators, like endocannabinoids (eCB). It has been well documented that eCB are able to suppress pain pathways. The present study investigates the effect of OXT in paw carrageenan-induced pain. Intracerebroventricular (icv) administration of OXT, but neither intraperitoneal nor intraplantar route, induces an antihyperalgesic effect increasing paw withdrawal latency to mechanical or thermal stimuli. Our results clearly demonstrate that 3 and 6 h following carrageenan challenge, central administration of OXT (30 ng/mouse) shows a significant antihyperalgesic activity. Moreover, for the first time, we demonstrate that CB1 receptor plays a key role in the antihyperalgesic effect of OXT. In fact our results show CB1 antagonist, but not the specific CB2 antagonist reduce OXT-induced antihyperalgesic effect. In addition, our data show that central OXT administration is able to reduce carrageenan-induced hyperalgesia but does not modify carrageenan-induced paw edema. Finally, using opioid antagonists we confirm an important role of opioid receptors. In conclusion, our experiments suggest that central administration of OXT reduces hyperalgesia induced by intraplantar injection of carrageenan, and this effect may work via cannabinoid and opioid systems.  相似文献   

9.
Central administration of either adrenomedullin 2 (AM2) or adrenomedullin (AM) activates hypothalamic oxytocin (OXT)-secreting neurons in rats. We compared AM2 with AM, given intracerebroventricularly (icv), across multiple measures: (1) plasma OXT levels in conscious rats; (2) blood pressure, heart rate and circulating catecholamine levels in urethane-anesthetized rats; and (3) the expression of the c-fos gene in the supraoptic (SON) and the paraventricular nuclei (PVN). We also tested the effects of the AM receptor antagonist, AM(22-52) and calcitonin gene-related peptide (CGRP) antagonist, CGRP(8-37) on these measures. Plasma OXT levels at 10 min after icv injection of AM (1 nmol/rat) were increased (compared with vehicle), but OXT levels after AM2 (1 nmol/rat) were nearly double the levels seen after AM injection. OXT levels remained elevated at 30 min. Pretreatment with AM(22-52) (27 nmol/rat) and CGRP(8-37) (3 nmol/rat), nearly abolished the increase in plasma OXT level after AM injection, but partially blocked OXT level changes due to AM2. Increases in blood pressure, heart rate and circulating catecholamines were all greater in response to central AM2 than to AM at the same dose. In situ hybridization histochemistry showed that both AM2 and AM induced expression of the c-fos gene in the SON and the PVN, but AM(22-52)+CGRP(8-37) could only nearly abolish the effects of centrally administered AM. These results suggest that the more potent central effects of AM2 and only partial blockade by AM/CGRP receptor antagonists may result from its action on an additional, as yet unidentified, specific receptor in the central nervous system.  相似文献   

10.
Neuropathic pain is diagnosed primarily by sensory dysfunction, which includes both spontaneous, and stimulus-evoked pain. Clinical evaluation highlights the disabilities which characterise this condition for most patients. Chronic constriction injury of the sciatic nerve (CCI) evokes sensory dysfunction characteristic of neuropathic pain. Approximately, 30 % of CCI rats show disabilities similar to those identified in clinical evaluation of neuropathic pain patients, these include: altered social behaviours; sleep disturbances; and endocrine dysfunction. The periaqueductal grey (PAG) is a nodal point in the brain circuits which regulate these functions, and undergoes a distinct set of neural and glial adaptations following CCI, in rats with disabilities. CCI increases corticosterone, which through its actions at the glucocorticoid receptor (GR), can trigger cellular adaptation. GR expression in PAG was quantified using qRT-PCR, Western blotting and immunohistochemical analyses and nerve-injured rats, with and without disabilities, were compared. Our data showed that the PAG of disabled rats has significantly increased expression of GR mRNA and protein. Further, this increased protein expression reflects contrasting patterns of change in GR expression in PAG subregions. The dorsolateral PAG had significant increases in the number of GR-immunoreactive (GR-IR) cells and the caudal lateral and ventrolateral PAG each had significant reductions in the number of GR-IR cells. These regional increases and decreases correlated with the degree of disability, as indicated by the degree of change in social behaviours. Our results suggest a role for altered PAG, GR–corticosterone interactions and their resultant cellular consequences in the expression of disabilities in a subpopulation of nerve-injured rats.  相似文献   

11.
目的:探讨下丘脑催产素(OXT)对大鼠摄食和胃动力的影响及调控机制。方法:采用荧光金逆行追踪结合免疫组化实验,观察大鼠视上核(SON)与弓状核(ARC)之间的神经通路;采用核团置管术观察ARC微量注射OXT对大鼠摄食的影响;采用单极电刺激观察电刺激SON对大鼠胃运动的影响及ARC微量注射OXT对大鼠胃运动和胃排空的影响。结果:荧光金逆行追踪结合免疫组化实验显示大鼠SON与ARC之间存在神经通路;ARC微量注射OXT大鼠0-2 h、0-3 h和0-4 h摄食量显著下降,OXT受体拮抗剂阿托西班可完全阻断OXT的抑制摄食作用,注射OXT和缩胆囊素(CCK)受体拮抗剂MK-329混合液后,OXT对大鼠摄食的抑制作用被部分阻断;电刺激SON,大鼠胃运动幅度和频率显著增强,预先向ARC内微量注射阿托西班后再电刺激SON,电刺激SON对胃运动的促进作用进一步增强;ARC微量注射OXT后,大鼠胃运动幅度和频率显著降低,阿托西班可完全阻断OXT对胃运动幅度和频率的抑制作用,MK-329可部分阻断OXT对胃运动幅度和频率的抑制作用;ARC微量注射OTX后,大鼠胃排空率显著降低,阿托西班可完全阻断OXT对胃排空的抑制作用,MK-329可部分阻断OXT对胃排空的抑制作用。结论:SON-ARC内具有OXT神经通路,且该通路由CCK介导。  相似文献   

12.
The c-Raf - MEK1/2 - ERK1/2 mitogen-activated protein kinase (MAPK) intracellular signalling cascade in neurons plays important roles in the control of a variety of behaviours, including social behaviours and anxiety. These roles partially overlap with those described for oxytocin (OXT), and it has been shown that OXT activates the MAPK pathway in the hypothalamus (of male), and hippocampus (of female) rats. Here, by combining behavioural (light/dark box) and biochemical analyses (western blotting), we tested two hypotheses: (i) that OXT is anxiolytic within the hypothalamus of females, and (ii) that this effect, as well as that of lactation-associated anxiolysis, depends on the recruitment of the MAPK pathway. We found that, when injected bilaterally into the hypothalamic paraventricular nucleus (PVN), OXT decreased anxiety-like behaviour in virgins, and that this effect depended on phosphorylation of MEK1/2. MAPK pathway activation in lactation was evident by high phosphorylated (p) MEK1/2 levels, and nuclear translocation of ERK1. The high pMEK1/2 levels were necessary for the anxiolytic phenotype typically observed during lactation. Interestingly, exogenous OXT in lactating rats reduced pMEK1/2 levels without a concomitant effect on anxiety, indicating that OXT receptor activation can lead to recruitment of additional intracellular pathways to modulate MEK activity. Still other pathways could include MEK, but without subsequent activation of ERK, as we did not observe any increase in OXT-induced ERK phosphorylation. Together the results demonstrate that the MAPK pathway, especially MEK1/2, is critically involved in the regulation of anxiety-like behaviour in female rats.  相似文献   

13.
Here, we review the functional roles of cyclic ADP-ribose and CD38, a transmembrane protein with ADP-ribosyl cyclase activity, in mouse social behavior via the regulation of oxytocin (OXT) release, an essential component of social cognition. Herein we describe data detailing the molecular mechanism of CD38-dependent OXT secretion in CD38 knockout mice. We also review studies that used OXT, OXT receptor (OXTR), or CD38 knockout mice. Additionally, we compare the behavioral impairments that occur in these knockout mice in relation to the OXT system and CD38. This review also examines autism spectrum disorder (ASD), which is characterized by social and communication impairments, in relation to defects in the OXT system. Two single nucleotide polymorphisms (SNPs) in the human CD38 gene are possible risk factors for ASD via inhibition of OXT function. Further analysis of CD38 in relation to the OXT system may provide a better understanding of the neuroendocrinological roles of OXT and CD38 in the hypothalamus and of the pathophysiology of ASD. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

14.

Huntington disease (HD) is a progressive neurological disorder with dominant motor symptoms. It also has psychiatric manifestations, like anxiety and depression, that can emerge themselves before motor symptoms and impose a major burden on patients. Oxytocin (OXT) is a newly emerged treatment for disorders like autism and schizophrenia and recently is using to alleviate depression and anxiety. In the current study, we investigated the behavioral and molecular effects of OXT on the development of anxiety and depression in 3-nitropropionic acid (3-NP)-induced model of HD. Anxiety- and depression-like behaviors as well as the levels of oxytocin receptor (OXTR), metabotropic glutamate receptor (mGluR) 2, mGluR5, and glutathione (GSH) were measured in striatum, hippocampus, prefrontal cortex, and amygdala. Also, we questioned if sex had any modulatory effect. We found that 3-NP increased anxiety and depression compared to controls. It also reduced the levels of OXTR and mGluR2, increased mGluR5, and reduced GSH in studied brain regions. Pretreatment with OXT before the injection of 3-NP ameliorated anxiety and depression. Additionally, it protected the brain from developing low levels of OXTR, mGluR2, and GSH and high levels of mGluR5 in studied regions. The protective effects of OXT were similar between male and female animals. These data suggest that OXTR, mGluR2, mGluR5, and GSH may contribute to psychiatric manifestations of HD. In addition, pretreatment with OXT could prevent the mood changes in male and female rats.

  相似文献   

15.
Luteolysis is caused by a pulsatile release of prostaglandin F(2alpha) (PGF(2alpha)) from the uterus in ruminants, and a positive feedback between endometrial PGF(2alpha) and luteal oxytocin (OXT) has a physiologic role in the promotion of luteolysis. The bovine corpus luteum (CL) produces vasoactive substances, such as endothelin 1 (EDN1) and angiotensin II (Ang II), that mediate and progress luteolysis. We hypothesized that luteal OXT has an additive function to ensure the CL regression with EDN1 and Ang II, and that it has an active role in the luteolytic cascade in the cow. Thus, the aim of the present study was to observe real-time changes in the local secretion of luteal OXT and to determine its relationship with other local mediators of luteolysis. Microdialysis system (MDS) capillary membranes were implanted surgically into each CL of six cyclic Holstein cows (18 lines total among the six cows) on Day 15 (estrus == Day 0) of the estrous cycle. Simultaneously, catheters were implanted to collect ovarian venous plasma ipsilateral to the CL. Although the basal secretion of OXT by luteal tissue was maintained during the experimental period, the intraluteal PGF(2alpha) secretion gradually increased up to 300% from 24 h after the onset of luteolysis (0 h; time in which progesterone started to decrease). In each MDS line (microenvironment) within the CL, the local releasing profiles of OXT were positively associated with PGF(2alpha) and EDN1 within the CL in all 18 MDS lines implanted in the six CLs (OXT vs. PGF(2alpha), 50.0%; OXT vs. EDN1, 72.2%; P < 0.05). On the other hand, the intraluteal OXT was weakly related to Ang II (OXT vs. Ang II, 27.7%). In the ovarian vein, the peak concentration of PGF(2alpha) increased significantly when the peak of PGF(2alpha) coincided with the peak of OXT after the onset of spontaneous luteolysis (P < 0.05). In conclusion, intraluteal OXT may locally modulate secretion of vasoactive substances, particularly EDN1 and PGF(2alpha) within the CL, and thus might be one of the luteal mediators of spontaneous luteolysis in the cow.  相似文献   

16.
家兔隔核中去甲肾上腺素对皮肤与内脏痛阈的影响   总被引:4,自引:0,他引:4  
汪溯  莫浣英 《生理学报》1989,41(2):128-135
本工作以电刺激内脏大神经或耳尖部皮肤测定清醒家兔内脏痛阈或皮肤痛阈,以探讨隔核去甲肾上腺素在内脏镇痛和皮肤镇痛中的作用以及与中脑导水管周围灰质(PAG)中内阿片肽系统的关系。实验观察到,双侧隔核内微量注射α受体激动剂可乐宁(10μg/2μl)或α受体阻断剂酚妥拉明(10μg/2μl)对内脏痛阈无明显影响。注入β受体激动剂异丙肾上腺素(1μg/2μl)使内脏痛阐明显升高;而注入β受体阻断剂心得安(1Cμg/2μl)则内脏痛阈明显降低。隔核内注入酚妥拉明(10μg/2μl)或心得安(10μg/2μl)均可使皮肤痛阈明显提高。提示,隔核内NA通过β受体调制内脏痛;通过α受体和β受体调制皮肤痛。隔核内注入异丙肾上腺素(1μg/2μl)明显地镇内脏痛,此作用可被PAG内注射纳洛酮(1μg/2μl)或注射抗亮啡肽抗血清(1:20,000)所减弱;但可使PAG内亮啡肽样物质释放量增加。这提示,隔核内NA的镇内脏痛作用与PAG的内阿片肽系统有关;其中亮非肽在这一过程中具有重要作用。  相似文献   

17.
《Life sciences》1997,61(25):PL397-PL401
The injection of endothelin-1 (ET-1) (2 pmol) into the dorsolateral periaqueductal gray area (PAG) of mice produces antinociceptive effect as underscored by increases in the latency time for the reaction to a hot plate. Pretreatment of the PAG area with bosentan (10 nmol) (a mixed ETA/ETB receptor antagonist), FR 139317 (5 nmol) (ETA receptor selective antagonist) or BQ-788 (5 nmol) (ETB receptor selective antagonist) greatly reduced the antinociceptive effect induced by ET-1. Therefore, ET-1 induces antinociceptive effects via both ETA/ETB receptors. In addition, since ET-antagonists lowered per se the control reaction time of the mice when administered alone to the PAG area, we would suggest that endogenous ET-1 acting within the PAG area contributes to the suppression of pain.  相似文献   

18.
曹威  周仲福 《生理学报》1989,41(4):388-394
We have reported that intracerebroventricular (i. c. v.) injection of 1-4 ng of CCK-8 to the rat produced a remarkable antagonistic effect on morphine analgesia. In order to study the species specificity and the site of action, CCK-8 was microinjected into the PAG of the rabbit, and its influence on morphine analgesia and electroacupuncture analgesia was observed. The latency of the escape response (ERL) to radiant heat focused on the snout was measured as an index of the pain threshold. Microinjections were made via cannulae chronically implanted into the PAG. The drug solutions were delivered in a volume of 1 microliter, at a speed of 0.125 microliter/min. The ERL was measured for a period of 60 or 70 minutes at 10 min intervals. 1. CCK-8 administered unilaterally to the PAG of the rabbit at a dose of 3 ng antagonized the analgesia induced by morphine (4 mg/kg, i. v.) by 73% (P less than 0.001), and reduced the analgesic effect of electroacupuncture by 67% (P less than 0.001). These effects were dose-dependent within the range from 1.5 ng to 6.0 ng. The effect of CCK-8 was reversed by CCK receptor blocker proglumide (4 microliters, intra-PAG injection). Unsulfated CCK-8 (CCK-us) had no effect in this regard. These results indicate that in the PAG of the rabbit, exogenously administered CCK-8 was capable of antagonizing opioid analgesia by the activation of CCK receptors. 2. Two groups of rabbits were given with morphine (2 mg/kg, i. v.) and simultaneous injection of CCK-8 antiserum (CCK-AS, 1 microliter) or normal rabbit serum (NRS) into the PAG.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The midbrain periaqueductal gray matter (PAG) is an important brain region for the coordination of mu-opioid-induced pharmacological actions. The present study was designed to determine whether newly isolated mu-opioid peptide endomorphins can activate G proteins through mu-opioid receptors in the PAG by monitoring the binding to membranes of the non-hydrolyzable analog of GTP, guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS). An autoradiographic [(35)S]GTPgammaS binding study showed that both endomorphin-1 and -2 produced similar anatomical distributions of activated G proteins in the mouse midbrain region. In the mouse PAG, endomorphin-1 and -2 at concentrations from 0.001 to 10 microM increased [(35)S]GTPgammaS binding in a concentration-dependent manner and reached a maximal stimulation of 74.6+/-3.8 and 72.3+/-4.0%, respectively, at 10 microM. In contrast, the synthetic selective mu-opioid receptor agonist [D-Ala(2),NHPhe(4), Gly-ol]enkephalin (DAMGO) had a much greater efficacy and produced a 112.6+/-5.1% increase of the maximal stimulation. The receptor specificity of endomorphin-stimulated [(35)S]GTPgammaS binding was verified by coincubating membranes with endomorphins in the presence of specific mu-, delta- or kappa-opioid receptor antagonists. Coincubation with selective mu-opioid receptor antagonists beta-funaltrexamine or D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2) (CTOP) blocked both endomorphin-1 and-2-stimulated [(35)S]GTPgammaS binding. In contrast, neither delta- nor kappa-opioid receptor antagonist had any effect on the [(35)S]GTPgammaS binding stimulated by either endomorphin-1 or -2. These findings indicate that both endomorphin-1 and -2 increase [(35)S]GTPgammaS binding by selectively stimulating mu-opioid receptors with intrinsic activity less than that of DAMGO and suggest that these new endogenous ligands might be partial agonists for mu-opioid receptors in the mouse PAG.  相似文献   

20.
The oxytocin/oxytocin receptor (OXT/OXTR) system plays an important role in the regulation of parturition. The amnion is a major source of prostaglandins and inflammatory cytokine synthesis, which increase both before and during labor. Amnion is a noncontractile tissue; therefore, the role played by OXT/OXTR in this tissue will be fundamentally different from the role played in myometrial contractions. In the present study, we demonstrate increased OXTR mRNA and protein concentrations in human amnion epithelial cells associated with the onset of labor. We show that incubation of primary human amnion epithelial cells with IL1B results in a rapid, transient up-regulation of OXTR mRNA expression, which peaks in prelabor samples after 6 h. Incubation of prelabor amnion epithelial cells with OXT results in a marked increase of prostaglandin E(2) synthesis, and we demonstrate that OXT activates the extracellular signal-regulated protein kinase signal transduction pathway to stimulate up-regulation of cyclo-oxygenase 2 in human amnion epithelial cells. The increased ability of human amnion to produce prostaglandins in response to OXT treatment suggests a complementary role for the OXT/OXTR system in the activation of human amnion and the onset of labor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号