首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
    
v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.  相似文献   

4.
Point mutations of the Ras family are frequently found in human cancers at a prevalence rate of 30%. The most common mutation K-Ras(G12V), required for tumor proliferation, survival, and metastasis due to its constitutively active GTPase activity, has provided an ideal target for cancer therapy. 10-23 DNAzyme, an oligodeoxyribonucleotide-based ribonuclease consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, has been shown to effectively cleave the target mRNA at purine-pyrimidine dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of K-Ras(G12V)(GGU → GUU) at the GU dinucleotide while left the wild-type (WT) K-Ras mRNA intact. The K-Ras(G12V)-specific 10-23 DNAzyme was able to reduce K-Ras(G12V) at both mRNA and protein levels in SW480 cell carrying homozygous K-Ras(G12V). No effect was observed on the WT K-Ras in HEK cells. Although K-Ras(G12V)-specific DNAzymes alone did not inhibit proliferation of SW480 or HEK cells, pre-treatment of this DNAzyme sensitized the K-Ras(G12V) mutant cells to anti-cancer agents such as doxorubicin and radiation. These results offer a potential of using allele-specific 10-23 DNAzyme in combination with other cancer therapies to achieve better effectiveness on cancer treatment.  相似文献   

5.
We report here the first inhibitor-bound structure of a mitotic motor protein. The 1.9 A resolution structure of the motor domain of KSP, bound with the small molecule monastrol and Mg2+ x ADP, reveals that monastrol confers inhibition by "induced-fitting" onto the protein some 12 A away from the catalytic center of the enzyme, resulting in the creation of a previously non-existing binding pocket. The structure provides new insights into the biochemical and mechanical mechanisms of the mitotic motor domain. Inhibition of KSP provides a novel mechanism to arrest mitotic spindle formation, a target of several approved and investigative anti-cancer agents. The structural information gleaned from this novel pocket offers a new angle for the design of anti-mitotic agents.  相似文献   

6.
Introduction: Despite extreme genetic heterogeneity, tumors often show similar alterations in the expression, stability, and activation of proteins important in oncogenic signaling pathways. Thus, classifying tumor samples according to shared proteomic features may help facilitate the identification of cancer subtypes predictive of therapeutic responses and prognostic for patient outcomes. Meanwhile, understanding mechanisms of intrinsic and acquired resistance to anti-cancer therapies at the protein level may prove crucial to devising reversal strategies.

Areas covered: Herein, we review recent advances in quantitative proteomic technology and their applications in studies to identify intrinsic tumor subtypes of various tumors, to illuminate mechanistic aspects of pharmacological and oncogenic adaptations, and to highlight interaction targets for anti-cancer compounds and cancer-addicted proteins.

Expert commentary: Quantitative proteomic technologies are being successfully employed to classify tumor samples into distinct intrinsic subtypes, to improve existing DNA/RNA based classification methods, and to evaluate the activation status of key signaling pathways.  相似文献   


7.
    
Bone sarcomatous cells derived from human malignant tumors were cultured. The mitotic index was recorded for 39 hr. When the cultured cells originated from patients with cancer disease before any chemotherapy, ultradian mitotic rhythms of a 6-9-hr period were detected, but in many cases only after a sensitive statistical analysis was performed. When the cultured cells originated from cancer patients undergoing chemotherapy, the mitotic index was decreased, and the amplitudes of the 6-9-hr component oscillations of the mitotic index were highly significantly increased. Damping and fading out of an ultradian mitotic rhythmicity was a bad prognostic portent in bone cancer. With reference to chemotherapy, the restored and amplified ultradian rhythmicity disclosed an appreciable antitumor effect and better survival prospects for the patient.  相似文献   

8.
Microtubules,microtubule-interfering agents and apoptosis   总被引:13,自引:0,他引:13  
Microtubules are dynamic polymers that play crucial roles in a large number of cellular functions. Their pivotal role in mitosis makes them a target for the development of anticancer drugs. Microtubule-damaging agents suppress microtubule dynamics, leading to disruption of the mitotic spindle in dividing cells, cell cycle arrest at M phase, and late apoptosis. A better understanding of the processes coupling microtubule damage to the onset of apoptosis will reveal sites of potential intervention in cancer chemotherapy. Inhibition of microtubule dynamics induces persistent modification of biological processes (M arrest) and signaling pathways (mitotic spindle assembly checkpoint activation, Bcl-2 phosphorylation, c-Jun NH2-terminal kinase activation), which ultimately lead to apoptosis through the accumulation of signals that finally reach the threshold for the onset of apoptosis or through diminishing the threshold for engagement of cell death. Microtubules serve also as scaffolds for signaling molecules that regulate apoptosis, such as Bim and survivin, and their release from microtubules affect the activities of these apoptosis regulators. Thus, sustained modification of signaling routes and changes in the scaffolding properties of microtubules seem to constitute two major processes in the apoptotic response induced by microtubule-interfering agents.  相似文献   

9.
10.
    
Retinoids, physiological regulators of cell growth and differentiation, are used in the treatment or chemoprevention of several malignant diseases. This class of compounds can induce growth arrest or apoptosis in tumor cells. Permanent growth arrest of retinoid-treated cells is often assumed to result from retinoid-induced differentiation. Recent studies in breast carcinoma and neuroblastoma cells demonstrated that retinoids can stop tumor cell growth through the program of senescence rather than differentiation. Retinoid-induced tumor suppression is associated with the induction of multiple intracellular and secreted growth-inhibitory proteins. Most of these proteins were also found to be upregulated in senescent cells. The induction of senescence-associated growth inhibitors appears to be an indirect effect of retinoids. Elucidation of the mechanisms responsible for the induction of growth-inhibitory genes in retinoid-treated cells should help in developing agents that would mimic the antiproliferative effect of retinoids in retinoid-insensitive cancers.  相似文献   

11.
The aim of this work was to study the ontogeny of chondrocyte cell division using embryo, adult and osteoarthritic(OA) cartilage. We searched for mitosis phases and performed a comparative evaluation of mitotic index, basic fibroblast growth factor b (FGFb), transforming growth factor β1 (TGF-β1) receptors, cyclin dependent kinase (CDK 1)and Cyclin-B expression in fetal, neonate, 3, 5, 8 weeks old rats and experimental OA. Our results showed that mitosis phases were observed in all normal cartilage studied, although, we found a decrease in mitotic index in relation to tissue development. No mitosis was detected in OA cartilage. We also found a statistical significant reduction in cell number in OA cartilage, compared with the normal tissue. Furthermore, FGFb and TGF-β1 receptors diminished in relation to tissue development, and were very scarce in experimental OA. Western blot assays showed CDK-1 expression in all cases, including human-OA cartilage. Similar results were observed for Cyclin-B, except for 8 weeks, when it was notexpressed. Our results suggest that cell division seems to be scarce, if not absent within the OA cartilage studied.Nevertheless, the existence of factors essential for cell division leaves open the question concerning chondrocyte proliferation in OA cartilage, which is likely to be present in the early stages of the disease.  相似文献   

12.
13.
Proteins of the macroglobulin family are an ancient and evolutionarily conservative link of the immune system, which is actively involved in both inhibition of tumor growth cells and proliferation of tumor cells. Two basically different binding sites and a great conformational plasticity of all representatives of the macroglobulin family, as well as the presence of two to four representatives of the family in the blood of most species allow them to transport diverse substances and exert various regulatory influences on both the tumor and the entire organism. For example, the capacity of macroglobulins for binding hydrolases makes it possible to inhibit enzyme mediated tumor invasion. At the same time, an excess of macroglobulin/hydrolase complexes can activate apoptosis. The tumor is able of using macroglobulins, especially pregnancy-associated proteins, for its own protection. Specifically, pregnancy-associated α2-glycoprotein, which is actively produced by human tumor cells, blocks the his to compatibility complex antigens. On the contrary, the capacity of binding zinc stimulates the thymulin-dependent activation of natural killer cells. Nevertheless, the actively growing tumor expresses many receptors to macroglobulins, which are the main carriers of some cytokines and growth factors essential for proliferation.  相似文献   

14.
Epidemic models are always simplifications of real world epidemics. Which real world features to include, and which simplifications to make, depend both on the disease of interest and on the purpose of the modelling. In the present paper we discuss some such purposes for which a stochastic model is preferable to a deterministic counterpart. The two main examples illustrate the importance of allowing the infectious and latent periods to be random when focus lies on the probability of a large epidemic outbreak and/or on the initial speed, or growth rate, of the epidemic. A consequence of the latter is that estimation of the basic reproduction number R0 is sensitive to assumptions about the distributions of the infectious and latent periods when using data from the early stages of an outbreak, which we illustrate with data from the H1N1 influenza A pandemic. Some further examples are also discussed as are some practical consequences related to these stochastic aspects.  相似文献   

15.
    
Tumors are complex cellular and acellular environments within which cancer clones are under continuous selection pressures. Cancer cells are in a permanent mode of interaction and competition with each other as well as with the immediate microenvironment. In the course of these competitive interactions, cells share information regarding their general state of fitness, with less‐fit cells being typically eliminated via apoptosis at the hands of those cells with greater cellular fitness. Competitive interactions involving exchange of cell fitness information have implications for tumor growth, metastasis, and therapy outcomes. Recent research has highlighted sophisticated pathways such as Flower, Hippo, Myc, and p53 signaling, which are employed by cancer cells and the surrounding microenvironment cells to achieve their evolutionary goals by means of cell competition mechanisms. In this review, we discuss these recent findings and explain their importance and role in evolution, growth, and treatment of cancer. We further consider potential physiological conditions, such as hypoxia and chemotherapy, that can function as selective pressures under which cell competition mechanisms may evolve differently or synergistically to confer oncogenic advantages to cancer.  相似文献   

16.

Background and Aims

Although being tall is advantageous in light competition, plant height growth is often similar among dominant plants in crowded stands (height convergence). Previous theoretical studies have suggested that plants should not overtop neighbours because greater allocation to supporting tissues is necessary in taller plants, which in turn lowers leaf mass fraction and thus carbon gain. However, this model assumes that a competitor has the same potential of height growth as their neighbours, which does not necessarily account for the fact that height convergence occurs even among individuals with various biomass.

Methods

Stands of individually potted plants of Chenopodium album were established, where target plants were lifted to overtop neighbours or lowered to be overtopped. Lifted plants were expected to keep overtopping because they intercept more light without increased allocation to stems, or to regulate their height to similar levels of neighbours, saving biomass allocation to the supporting organ. Lowered plants were expected to be suppressed due to the low light availability or to increase height growth so as to have similar height to the neighbours.

Key Results

Lifted plants reduced height growth in spite of the fact that they received higher irradiance than others. Lowered plants, on the other hand, increased the rate of stem elongation despite the reduced irradiance. Consequently, lifted and lowered plants converged to the same height. In contrast to the expectation, lifted plants did not increase allocation to leaf mass despite the decreased stem length. Rather, they allocated more biomass to roots, which might contribute to improvement of mechanical stability or water status. It is suggested that decreased leaf mass fraction is not the sole cost of overtopping neighbours. Wind blowing, which may enhance transpiration and drag force, might constrain growth of overtopping plants.

Conclusions

The results show that plants in crowded stands regulate their height growth to maintain similar height to neighbours even when they have potential advantages in height growth. This might contribute to avoidance of stresses caused by wind blowing.  相似文献   

17.
18.
19.
ABSTRACT

Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis. Here we summarize the current experimental evidence regarding the anti-cancer role of heparin and its derivatives, and conclude that there is evidence to support heparin’s role in inhibiting cancer progression, making it a promising anti-cancer agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号