首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitotic arrest induced by antimitotic drugs can cause apoptosis or p53-dependent cell cycle arrest. It can also cause DNA damage, but the relationship between these events has been unclear. Live, single-cell imaging in human cancer cells responding to an antimitotic kinesin-5 inhibitor and additional antimitotic drugs revealed strong induction of p53 after cells slipped from prolonged mitotic arrest into G1. We investigated the cause of this induction. We detected DNA damage late in mitotic arrest and also after slippage. This damage was inhibited by treatment with caspase inhibitors and by stable expression of mutant, noncleavable inhibitor of caspase-activated DNase, which prevents activation of the apoptosis-associated nuclease caspase-activated DNase (CAD). These treatments also inhibited induction of p53 after slippage from prolonged arrest. DNA damage was not due to full apoptosis, since most cytochrome C was still sequestered in mitochondria when damage occurred. We conclude that prolonged mitotic arrest partially activates the apoptotic pathway. This partly activates CAD, causing limited DNA damage and p53 induction after slippage. Increased DNA damage via caspases and CAD may be an important aspect of antimitotic drug action. More speculatively, partial activation of CAD may explain the DNA-damaging effects of diverse cellular stresses that do not immediately trigger apoptosis.  相似文献   

2.
HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targeting agent (MTA) docetaxel, in preclinical models of NSCLC. We identified a subset of NSCLC cell lines in which these drugs act in synergy to enhance cell death. Xenograft models of NSCLC demonstrated tumor growth inhibition, and in some cases, regression in response to combination treatment. Treatment with IPI-504 enhanced the antimitotic effects of docetaxel leading to the hypothesis that the mitotic checkpoint is required for the response to drug combination. Supporting this hypothesis, overriding the checkpoint with an Aurora kinase inhibitor diminished the cell death synergy of IPI-504 and docetaxel. To investigate the molecular basis of synergy, an unbiased stable isotope labeling by amino acids in cell culture (SILAC) proteomic approach was employed. Several mitotic regulators, including components of the ubiquitin ligase, anaphase promoting complex (APC/C), were specifically down-regulated in response to combination treatment. Loss of APC/C by RNAi sensitized cells to docetaxel and enhanced its antimitotic effects. Treatment with a PLK1 inhibitor (BI2536) also sensitized cells to IPI-504, indicating that combination effects may be broadly applicable to other classes of mitotic inhibitors. Our data provide a preclinical rationale for testing the combination of IPI-504 and docetaxel in NSCLC.  相似文献   

3.
Spindle poisons, such as paclitaxel and vinblastine, exert their potent anti-neoplastic effects through activation of the spindle assembly checkpoint (SAC), thereby arresting cells in mitosis. Unfortunately, only certain cancers are susceptible to these drugs, and many patients fail to respond to treatment. We review the pathways that are triggered by spindle poisons and highlight recent studies that describe the great variability of tumor cells in responding to these drugs. We also describe the recent identification of an apoptotic pathway that is activated by mitotic arrest in response to spindle poisons. Emerging from these studies is not only a greater understanding of how these classic antimitotic agents bring about cell death, but also a wealth of potential new targets of anticancer therapeutics.  相似文献   

4.
Inhibitors of mitotic protein kinases are currently being developed as non-neurotoxic alternatives of microtubule-targeting agents (taxanes, vinca alkaloids) which provide a substantial survival benefit for patients afflicted with different types of solid tumors. Among the mitotic kinases, the cyclin-dependent kinases, the Aurora kinases, the kinesin spindle protein and Polo-like kinases (PLKs) have emerged as attractive targets of cancer therapeutics.The functions of mammalian PLK1-5 are traditionally linked to the regulation of the cell cycle and to the stress response. Especially the key role of PLK1 and PLK4 in cellular growth and proliferation, their overexpression in multiple types of human cancer and their druggability, make them appealing targets for cancer therapy. Inhibitors for PLK1 and PLK4 are currently being tested in multiple cancer trials. The clinical success of microtubule-targeting agents is attributed not solely to the induction of a mitotic arrest in cancer cells, but also to non-mitotic effects like targeting intracellular trafficking on microtubules. This raises the question whether new cancer targets like PLK1 and PLK4 regulate critical non-mitotic functions in tumor cells. In this article we summarize the important roles of PLK1-5 for the regulation of non-mitotic signaling. Due to these functions it is conceivable that inhibitors for PLK1 or PLK4 can target interphase cells, which underscores their attractive potential as cancer drug targets. Moreover, we also describe the contribution of the tumor-suppressors PLK2, PLK3 and PLK5 to cancer cell signaling outside of mitosis. These observations highlight the urgent need to develop highly specific ATP-competitive inhibitors for PLK4 and for PLK1 like the 3rd generation PLK-inhibitor Onvansertib to prevent the inhibition of tumor-suppressor PLKs in- and outside of mitosis. The remarkable feature of PLKs to encompass a unique druggable domain, the polo-box-domain (PBD) that can be found only in PLKs offers the opportunity for the development of inhibitors that target PLKs exclusively. Beyond the development of mono-specific ATP-competitive PLK inhibitors, the PBD as drug target will support the design of new drugs that eradicate cancer cells based on the mitotic and non-mitotic function of PLK1 and PLK4.  相似文献   

5.
Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit.

To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage.

Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells’ sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.  相似文献   

6.
Many mitotic kinases are both critical for maintaining genome stability and are important targets for anticancer therapies. We provide evidence that SIK3 (salt-inducible kinase 3), an AMP-activated protein kinase-related kinase, is important for mitosis to occur properly in mammalian cells. Downregulation of SIK3 resulted in an extension of mitosis in both mouse and human cells but did not affect the DNA damage checkpoint. Time-lapse microscopy and other approaches indicated that mitotic exit but not mitotic entry was delayed. Although repression of SIK3 alone simply delayed mitotic exit, it was able to sensitize cells to various antimitotic chemicals. Both mitotic arrest and cell death caused by spindle poisons were enhanced after SIK3 depletion. Likewise, the antimitotic effects due to pharmacological inhibition of mitotic kinases including Aurora A, Aurora B, and polo-like kinase 1 were enhanced in the absence of SIK3. Finally, in addition to promoting the sensitivity of a small-molecule inhibitor of the mitotic kinesin Eg5, SIK3 depletion was able to overcome cells that developed drug resistance. These results establish the importance of SIK3 as a mitotic regulator and underscore the potential of SIK3 as a druggable antimitotic target.  相似文献   

7.
The colR4 and colR15 beta 2-tubulin missense mutations for lysine-350 in Chlamydomonas reinhardtii (Lee and Huang, 1990) were originally isolated by selection for resistance to the growth inhibitory effects of colchicine. The colR4 and colR15 mutants have been found to be cross resistant to vinblastine and several classes of antimitotic herbicides, including the dinitroanilines (oryzalin, trifluralin, profluralin, and ethafluralin); the phosphoric amide amiprophos methyl; and the dimethyl propynl benzamide pronamide. Like colchicine and vinblastine, the antimitotic effects of these plant-specific herbicides have been associated with the depolymerization of microtubules. In contrast to their resistance to microtubule-depolymerizing drugs, the mutants have an increased sensitivity to taxol, a drug which enhances the polymerization and stability of microtubules. This pattern of altered sensitivity to different microtubule inhibitors was found to cosegregate and corevert with the beta-tubulin mutations providing the first genetic evidence that the in vivo herbicidal effects of the dinitroanilines, amiprophos methyl, and pronamide are related to microtubule function. Although wild-type like in their growth characteristics, the colR4 and colR15 mutants were found to have an altered pattern of microtubules containing acetylated alpha-tubulin, a posttranslational modification that has been associated with stable subsets of microtubules found in a variety of cells. Microtubules in the interphase cytoplasm and those of the intranuclear spindle of mitotic cells, which in wild-type Chlamydomonas cells do not contain acetylated alpha-tubulin, were found to be acetylated in the mutants. These data taken together suggest that the colR4 and colR15 missense mutations increase the stability of the microtubules into which the mutant beta-tubulins are incorporated and that the altered drug sensitivities of the mutants are a consequence of this enhanced microtubule stability.  相似文献   

8.
The mitotic Kinesin-5 motor proteins crosslink and slide apart antiparallel spindle microtubules, thus performing essential functions in mitotic spindle dynamics. Specific inhibition of their function by monastrol-like small molecules has been examined in clinical trials as anticancer treatment, with only partial success. Thus, strategies that improve the efficiency of monastrol-like anticancer drugs are required. In the current study, we examined the link between sensitivity to monastrol and occurrence of mitotic slippage in several human cell-lines. We found that the rank of sensitivity to monastrol, from most sensitive to least sensitive, is: AGS>HepG2>Lovo>Du145≥HT29. We show correlation between the sensitivity of a particular cell-line to monastrol and the tendency of the same cell-line to undergo mitotic slippage. We also found that in the monastrol resistant HT29 cells, prolonged monastrol treatments increase mRNA and protein levels of the chromosomal passenger protein survivin. In contrast, survivin levels are not increased by this treatment in the monastrol-sensitive AGS cells. We further show that over-expression of survivin in the monastrol-sensitive AGS cells reduces mitotic slippage and increases resistance to monastrol. Finally, we show that during short exposure to monastrol, Si RNA silencing of survivin expression reduces cell viability in both AGS and HT29 cells. Our data suggest that the efficiency of anti-cancer treatment with specific kinesin-5 inhibitors may be improved by modulation of expression levels of survivin.  相似文献   

9.
Indirect immunofluorescence was used to determine the distribution of calmodulin in the mitotic apparatus of rat kangaroo PtK2 and Chinese hamster ovary (CHO) cells. The distribution of calmodulin in PtK2 cells was compared to the distribution of tubulin, also as revealed by indirect immunofluorescence. During mitosis, calmodulin was found to be a dynamic component of the mitotic apparatus. Calmodulin first appeared in association with the forming mitotic apparatus during midprophase. In metaphase and anaphase, calmodulin was found between the spindle poles and the chromosomes. While tubulin was found in the interzonal region throughout anaphase, calmodulin appeared in the interzone region only at late anaphase. The interzonal calmodulin of late anaphase condensed during telophase into two small regions, one on each side of the midbody. Calmodulin was not detected in the cleavage furrow. In view of the differences in the localization of calmodulin, tubulin, and actin in the mitotic apparatus, experiments were designed to determine the effects of various antimitotic drugs on calmodulin localization. Cytochalasin B, an inhibitor of actin microfilaments, had no apparent effect on calmodulin or tubulin localization in the mitotic apparatus of CHO cells. Microtubule inhibitors, such as colcemid and N2O, altered the appearance of tubulin- and calmodulin-specific fluorescence in mitotic CHO cells. Cold temperature (0 degrees C) altered tubulin-specific fluorescence of metaphase PtK2 cells but did not alter calmodulin-specific fluorescence. From these studies, it is concluded that calmodulin is more closely associated with the kinetichore-to-pole microtubules than other components of the mitotic apparatus.  相似文献   

10.
11.
Microtubules undergo continual dynamic changes in mitotic cells as the mitotic spindle forms and is broken down and in interphase cells where they play a central role in intracellular trafficking, cell signaling, cell migration, and angiogenesis. Compounds that target the microtubule have been hugely successful in the clinic as chemotherapeutics, and this success is likely due to their ability to target cells regardless of their cell cycle stage. Additionally, new generation antibody-conjugated microtubule-targeting agents are improving the targeting of these drugs to tumors. Microtubule-targeting agents have been shown to have anti-angiogenic and vascular-disrupting properties as well as effects on cellular migration, intracellular trafficking, and cell secretion. There are a number of these compounds in development that target the vasculature, and different formulations of clinically used drugs are being developed to take advantage of these anti-angiogenic properties. Microtubule-targeting agents have also been shown to have the potential to treat neurodegenerative diseases, such as Alzheimer’s disease. Thus, drugs that target the microtubule will continue to have a major impact in oncology not only as anti-mitotics but also as potent inhibitors of interphase functions, and in future may also prove to be effective in reducing the consequences of neurodegenerative disease.  相似文献   

12.
Oxadiazole derivatives were synthesized and evaluated for their ability to inhibit tubulin polymerization and to cause mitotic arrest in tumor cells. The most potent compounds inhibited tubulin polymerization at concentrations below 1 microM. Lead analogs caused mitotic arrest of A431 human epidermoid cells and cells derived from multi-drug resistant tumors (10, EC(50)=7.8 nM). Competition for the colchicine binding site and pharmacokinetic properties of selected potent compounds were also investigated and are reported herein, along with structure-activity relationships for this novel series of antimitotic agents.  相似文献   

13.
S S Barham  B R Brinkley 《Cytobios》1976,15(58-59):85-96
Inhibitors of mitochondrial respiration, phosphorylation inhibitors, and uncoupling agents have been reported to delay or inhibit mitosis in cultured mammalian cells. Although the molecular mechanism by which mitosis is delayed in the presence of most respiratory inhibitors presumably involves lowered ATP production for mitotic requirements, one respiratory inhibitor, rotenone, was determined to arrest mitosis by an unrelated mechanism. Cell cycle kinetics studies, oxygen consumption measurements, and viscosity assays indicate that rotenone arrests cultured mammalian cells in mitosis by inhibiting spindle microtubule assembly by a mechanism analogous with colchicine, Colecemid and related antimitotic drugs. Amytal, which blocks electron transport at the same site as does rotenone, failed to arrest cell progression at mitosis. Rotenone delayed cell progression in all phases of the cell cycle, apparently as a direct result of respiration inhibition. Thus, rotenone appears to exert a dual function on events of the cell cycle.  相似文献   

14.
The mitotic checkpoint is a key cell cycle control mechanism that ensures an accurate segregation of chromosomes during mitosis by delaying the onset of anaphase until all chromosomes are properly attached to a bipolar mitotic spindle. While complete loss of this checkpoint is lethal in vertebrates, a weakened mitotic checkpoint is frequently seen in cancer cells and it may contribute to tumorigenesis. Many antitumor drugs, including spindle assembly inhibitors and DNA damaging agents, can activate the mitotic checkpoint. However, since these drugs influence interphase events besides activating the mitotic checkpoint, the role of the mitotic checkpoint in drug-induced cell death remained unclear. Using a KSP antagonist that specifically acts on mitotic cells, we have recently shown that activation of the mitotic checkpoint followed by mitotic slippage or adaptation, activates Bax and initiates apoptosis. Notably, cells with a weakened mitotic checkpoint incur much less apoptotic death than their checkpoint-proficient counterparts, indicating the requirement of a competent mitotic checkpoint in the induction of apoptosis. In light of these findings and other recent reports, the potential influence of the mitotic checkpoint in response to chemotherapies, and the strategy to target the mitotic checkpoint for cancer therapeutics are discussed.  相似文献   

15.
R M Evans  L M Fink 《Cell》1982,29(1):43-52
Analysis of cultured Chinese hamster ovary (CHO) cells has shown that vimentin exists primarily as two 57,000 dalton isoelectric variants, a nonphosphorylated form and a slightly more acidic phosphorylated form. Similar analyses of CHO cells that were treated with colcemid show the presence of at least two to three additional, more acidic, phosphorylated vimentin isoelectric variants. An increasing 32P-specific activity of these variants suggests that this alteration involves increased phosphorylation. Analysis of 32P-labeled vimentin from colcemid-treated cells indicates that the amount of the additional phosphorylated variants correlates with the accumulation of cells in mitosis. CHO cells enriched in mitotic cells without antimitotic drugs demonstrate the same alteration in the isoelectric focusing pattern of phosphorylated vimentin. When mitotic cells are replated, the amount of additional phosphorylated variants is reduced within 30 min. The data suggest that an alteration in phosphorylated vimentin is temporally related to the alteration in the organization of intermediate filaments in mitotic cells.  相似文献   

16.
Rotenone, a potent inhibitor of mitochondrial respiration is also an effective antimitotic agent. The addition of either rotenone or Colcemid to exponentially growing Chinese hamster ovary cells resulted in a dramatic increase in mitotic index after 90 min. When the cultures were washed free of the drugs, mitosis was completed and the cells progressed into G 1 at approximately the same rate. Further similarity of rotenone-arrested cells to Colcemid-induced mitotic inhibition was apparent at the ultrastructural level. Mitotic cells treated by either drug contained monopolar spindles with chromosomes grouped around centriole pairs near the cell center. Occasional microtubules were seen near the kinetochore and centrioles. These observations, along with the fact that rotenone inhibited the binding of 3H-colchicine to isolated bovine brain tubulin, suggested that rotenone inhibited mitosis by binding directly to tubulin to prevent microtubule assembly.  相似文献   

17.
Taxanes are powerful chemotherapy agents that target the microtubule cytoskeleton, leading to mitotic arrest and cell death; however, their clinical efficacy has been hampered due to the development of drug resistance. Therefore, other proteins involved in spindle assembly are being examined as potential targets for anticancer therapy. The mitotic kinesin, Eg5 is critical for proper spindle assembly; as such, inhibition of Eg5 leads to mitotic arrest making it a potential anticancer target. We wanted to validate Eg5 as a therapeutic target and determine if Eg5 inhibitors retain activity in Taxol-resistant cells. Using affinity chromatography we first show that the compound HR22C16 is an Eg5 inhibitor and does not interact with other microtubule motor proteins tested. Furthermore, HR22C16 along with its analogs, inhibit cell survival in both Taxol-sensitive and -resistant ovarian cancer cells with at least 15-fold greater efficacy than monastrol, the first generation Eg5 inhibitor. Further analysis with HR22C16-A1, the most potent HR22C16 analog, showed that it retains efficacy in PgP-overexpressing cells, suggesting that it is not a PgP substrate. We further show that HR22C16-A1 induces cell death following mitotic arrest via the intrinsic apoptotic pathway. Interestingly, the combination of HR22C16-A1 with Taxol results in an antagonistic antiproliferative and antimitotic effect, possibly due to the abrogation of Taxol-induced mitotic spindles by HR22C16-A1. Taken together, our results show that Eg5 inhibitors have promising anticancer activity and can be potentially used to overcome Taxol resistance in the clinical setting.  相似文献   

18.
Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.  相似文献   

19.
Kingo Endo 《FEBS letters》2010,584(11):2387-2392
We investigated the fate of budding yeast treated with nocodazole, a microtubule-depolymerizing drug. Cells died after mitotic arrest while staying in mitosis, suggesting that mitotic cell death, but not mitotic slippage, mainly occurs in nocodazole-treated cells. Nocodazole-treated cells showed features of apoptotic-like cell death, but not those of cell lysis or autophagy. Consistently, mitochondria-dependent production of reactive oxygen species was involved in the cell death. Similar cell death was also seen in cells after mitotic arrest by perturbation of the anaphase-promoting complex/cyclosome. In addition, caspase activity was found in nocodazole-treated cells, which was independent of the metacaspase, Mca1. Our results suggest that budding yeast can be a model to study mitotic cell death in cancer treatment with antimitotic drugs.  相似文献   

20.
Mitosis is the key event of the cell cycle during which the sister chromatids are segregated onto two daughter cells. It is well established that abrogation of the normal mitotic progression is a highly efficient concept for anti‐cancer treatment. In fact, various drugs that target microtubules and thus interfere with the function of the mitotic spindle are in clinical use for the treatment of various human malignancies for many years. However, since microtubule inhibitors not only target proliferating cells severe side effects limit their use. Therefore, the identification of novel mitotic drug targets other than microtubules have gained recently much attention. This review will summarize the latest developments on the identification and clinical evaluation of novel mitotic drug targets and will introduce novel concepts for chemotherapy that are based on recent progress in our understanding how mitotic progression is regulated and how anti‐mitotic drugs induce tumor cell death. J. Cell. Biochem. 111: 258–265, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号