首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense (1014 W/cm3) short (0.5 ps) 1.064-μm laser pulse were studied. It is found that, even at plasma densities exceeding the critical density, a small fraction of the incident laser radiation penetrates through the plasma in which the processes of density and temperature equalization still take place. The intensification (as compared to plasmas produced from denser foams and solid films) of transport processes in such plasma along and across the laser beam can be caused by the initial microheterogeneity of the solid target. The replacement of a small (10% by mass) part of the polymer with copper nanoparticles leads to a nearly twofold increase in the intensity of the plasma X-ray emission.  相似文献   

2.
The development of a technique for laser measurement of fPhotosystem II (PS II) photochemical characteristics of phytoplankton and terrestrial vegetation from an airborne platform is described. Results of theoretical analysis and experimental study of pump-and-probe measurement of the PS II functional absorption cross-section and photochemical quantum yield are presented. The use of 10 ns probe pulses of PS II sub-saturating intensity provides a significant, up to 150-fold, increase in the fluorescence signal compared to conventional `weak-probe' protocol. Little effect on the fluorescence yield from the probe-induced closure of PS II reaction centers is expected over the short pulse duration, and thus a relatively intense probe pulse can be used. On the other hand, a correction must be made for the probe-induced carotenoid triplet quenching and singlet-singlet annihilation. A Stern-Volmer model developed for this correction assumes a linear dependence of the quenching rate on the laser pulse fluence, which was experimentally validated. The PS II saturating pump pulse fluence (532 nm excitation) was found to be 10 and 40 μmol quanta m−2 for phytoplankton samples and leaves of higher plants, respectively. Thirty μs was determined as the optimal delay in the pump-probe pair. Our results indicate that the short-pulse pump-and-probe measurement of PS II photochemical characteristics can be implemented from an airborne platform using existing laser and LIDAR technologies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Results are presented from experimental studies of discharge instabilities and the energy and temporal characteristics of a vacuum-diode X-ray source with a laser plasma cathode over a wide range of energies, intensities, and durations of the plasma-forming laser pulse. It is experimentally shown that the vacuum-discharge dynamics and radiation processes in different discharge stages substantially depend on the parameters of the laser radiation. The shortest recorded pulse duration (10 ns) of Ti K-line radiation (4.5 keV) with a total photon number of 1011 is achieved when the laser plasma cathode is produced by a laser pulse with a duration of 27 ps and an intensity of 1013 W/cm2. It is found that the contrast of characteristic emission against the bremsstrahlung background is maximum when discharge instabilities are suppressed and the accelerating voltage is three to four times higher than the threshold voltage for line excitation.  相似文献   

4.
Kim JE  Pan D  Mathies RA 《Biochemistry》2003,42(18):5169-5175
The protein response to retinal chromophore isomerization in the visual pigment rhodopsin is studied using picosecond time-resolved UV resonance Raman spectroscopy. High signal-to-noise Raman spectra are obtained using a 1 kHz Ti:Sapphire laser apparatus that provides <3 ps visible (466 nm) pump and UV (233 nm) probe pulses. When there is no time delay between the pump and probe events, tryptophan modes W18, W16, and W3 exhibit decreased Raman scattering intensity. At longer pump-probe time delays of +5 and +20 ps, both tryptophan (W18, W16, W3, and W1) and tyrosine (Y1 + 2xY16a, Y7a, Y8a) peak intensities drop by up to 3%. These intensity changes are attributed to decreased hydrophobicity in the microenvironment near at least one tryptophan and one tyrosine residue that likely arise from weakened interaction with the beta-ionone ring of the chromophore following cis-to-trans isomerization. Examination of the crystal structure suggests that W265 and Y268 are responsible for these signals. These UV Raman spectral changes are nearly identical to those observed for the rhodopsin-to-Meta I transition, implying that impulsively driven protein motion by the isomerizing chromophore during the 200 fs primary transition drives key structural changes that lead to protein activation.  相似文献   

5.
Results are presented from experimental studies of the glow dynamics of a plasma jet generated during the irradiation of a plane aluminum target by an iodine laser pulse with the wavelength 1.315 μm. The laser pulse energy was 330–480 J, the pulse duration was 0.5 ns, and the focal spot diameter was 3 mm, the laser intensity on the target surface being ∼1013 W/cm2. The jet expanded across an external magnetic field with the strength ∼1 kOe. The residual air pressure in the vacuum chamber was ∼10−5 Torr. The spatiotemporal behavior of the jet glow was investigated using a nine-frame camera in two mutually perpendicular directions (along and across the magnetic field). The results of measurements indicate azimuthal asymmetry of the jet expansion.  相似文献   

6.
The picosecond photodissociation of the CO and O2 forms of alpha and beta chains of hemoglobin were studied by following pi pi Soret absorption changes using a Nd3+ phosphate-glass laser, 531-nm pump pulse, 8 ps full width half maximum, and a pump-probe double-beam absorption apparatus. Three intermediates were observed within the first 50 ps after photon absorption. The most notable differences between the two monomers are the extent and rate of geminate recombination with the two ligands. We attribute this result to differences between the tertiary protein structure of the alpha and beta forms of Hb, both distal and proximal.  相似文献   

7.
Skobelev  I. Yu.  Faenov  A. Ya.  Gasilov  S. V.  Pikuz  T. A.  Pikuz  S. A.  Magunov  A. I.  Boldarev  A. S.  Gasilov  V. A. 《Plasma Physics Reports》2010,36(13):1261-1268
X-ray diagnostics of the interaction of femtosecond laser pulses with intensities of 1016–1018 W/cm2 with CO2 clusters and frozen nanosize water particles is carried out. The stage of cluster expansion and the formation of a plasma channel, which governs the parameters of the formed X-ray radiation source and accelerated ion flows, is studied. The measurements are based on recording spatially resolved X-ray spectra of H- and He-like oxygen ions. Utilization of Rydberg transitions for spectra diagnostics makes it possible to determine plasma parameters on a time scale of t ∼ 10 ps after the beginning of a femtosecond pulse. The role of the rear edge of the laser pulse in sustaining the plasma temperature at a level of ∼100 eV in the stage of a nonadiabatic cluster expansion is shown. The analysis of the profiles and relative intensities of spectral lines allows one to determine the temperature and density of plasma electrons and distinguish the populations of “thermal” ions and ions that are accelerated up to energies of a few tens of kiloelectronvolts. It is shown that the use of solid clusters made of frozen nanoscale water droplets as targets leads to a substantial increase in the number of fast He-like ions. In this case, however, the efficiency of acceleration of H-like ions does not increase, because the time of their ionization in plasma exceeds the time of cluster expansion.  相似文献   

8.
C Y Dong  P T So  T French    E Gratton 《Biophysical journal》1995,69(6):2234-2242
We report the development of a scanning lifetime fluorescence microscope using the asynchronous, pump-probe (stimulated emission) approach. There are two significant advantages of this technique. First, the cross-correlation signal produced by overlapping the pump and probe lasers results in i) an axial sectioning effect similar to that in confocal and two-photon excitation microscopy, and ii) improved spatial resolution compared to conventional one-photon fluorescence microscopy. Second, the low-frequency, cross-correlation signal generated allows lifetime-resolved imaging without using fast photodetectors. The data presented here include 1) determination of laser sources' threshold powers for linearity in the pump-probe signal; 2) characterization of the pump-probe intensity profile using 0.28 microns fluorescent latex spheres; 3) high frequency (up to 6.7 GHz) lifetime measurement of rhodamine B in water; and 4) lifetime-resolved images of fluorescent latex spheres, human erythrocytes and a mouse fibroblast cell stained by rhodamine DHPE, and a mouse fibroblast labeled with ethidium bromide and rhodamine DHPE.  相似文献   

9.
We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell.  相似文献   

10.
Transient absorption studies of the pump-probe type were performed on the NO forms of the alpha- and beta-monomers of hemoglobin using a Nd3+ phosphate-glass laser. A second harmonic 531-nm, 8-ps fwhm pulse pumped the Q-band while a delayed continuum generated pulse was used to monitor pi pi* Soret absorption changes in the 410-453-nm region. Photodissociation of nitrosyl alpha- and beta-monomers was found to differ markedly from the tetramer in what we believe to be the formation of a five-coordinate HbNO (with proximal imidazole detached) photoproduct within the first 50 ps after photon absorption.  相似文献   

11.
Hot plasmas can be generated by fast and intense laser pulses ablating solids placed in vacuum. A Nd:Yag laser operating at the fundamental and second harmonics with 9-ns pulses (maximum energy of 900 mJ) focused on metallic surfaces produces high ablation yields of the order of μg/pulse and dense plasma that expands adiabatically at supersonic velocity along the normal to the target surface. The plasma emits neutral and charged particles. Charge states up to 10+ have been measured in heavy elements ablated with intensities of the order of 1010 W/cm2. The ion temperature of the plasma is evaluated from the ion energy distributions measured with an ion energy analyzer. The electron temperature is measured through Faraday cups placed at the end of long drift tubes by using time-of-flight technique. The neutral temperature is measured with a special mass quadrupole spectrometer placed along the normal to the target surface. The plasma temperature increases with the laser pulse intensity. The ion temperature reaches values of the order of 400 eV, the electron temperature is of the order of 1 keV for hot electrons and 0.1 eV for thermal electrons, and the neutral temperature is of the order of 200 eV. The experimental apparatus, the diagnostic techniques, and the procedures for the plasma temperature characterization will be presented and discussed in detail. Published in Russian in Fizika Plazmy, 2006, Vol. 32, No. 6, pp. 558–564. The text was submitted by the authors in English.  相似文献   

12.
The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D F ? λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ?10λ.  相似文献   

13.
In order to explore new more powerful ultrashort pulse laser and tunable laser for diode-pumping, this paper reports the growth and spectral assessment of Yb3+-doped KBaGd(MoO4)3 crystal. An Yb3+:KBaGd(MoO4)3 crystal with dimensions of 50×40×9 mm3 was grown by the TSSG method from the K2Mo2O7 flux. The investigated spectral properties indicated that Yb3+:KBaGd(MoO4)3 crystal exhibits broad absorption and emission bands, except the large emission and gain cross-sections. This feature of the broad absorption and emission bands is not only suitable for the diode pumping, but also for the production of ultrashort pulses and tunability. Therefore, Yb3+:KBaGd(MoO4)3 crystal can be regarded as a candidate for the ultrashort pulse and tunable lasers.  相似文献   

14.
《BBA》1985,806(1):81-92
Fluorescence enhancement phenomena and quenching by exciton-exciton annihilation on subnanosecond and nanosecond time-scales were investigated in spinach chloroplasts utilizing picosecond laser pulse pairs (530 nm, 30 ps wide) of equal intensity, spaced apart in time by variable delays of Δt = 0−6 ns. This new method was devised to study the effect of pulse energies (1·1010–2·1015 photons per cm2) on the overall fluorescence yield in order to deduce the degree of correlation between the two pulses as a function of Δt. In the case of open reaction centers (F0 state) in Photosystem II (PS II), it is shown that the quenching effect of excitons generated by the first pulse on the fluorescence yield of the second pulse diminishes with increasing Δt with a characteristic decorrelation time of 140 ± 60 ps. This effect is attributed to either (1) the decay of mobile excitons in the light-harvesting antenna pigment bed as these excitons migrate towards the PS II reaction centers and the associated smaller core antenna pigment pools, or (2) the decay of a quenching state of the reaction center (and/or core antenna) which appears following a rapid (less than 140 ps) trapping of the excitons initially created in the antenna pigment bed. The absence of a significant decay component of exciton quenchers with a lifetime comparable to the 300–600 ps intermediate phase of fluorescence decay kinetics suggests that this phase, although contributing to more than half of the integrated fluorescence emission signal, is not caused by freely mobile exitons migrating in a lake of pigments, but originates instead from smaller pigment pools to which the excitons have migrated. It is proposed that bimolecular exciton-exciton annihilation in these smaller domains dominates annihilation in the larger antenna pigment bed. In the case of closed reaction centers (Fmax state), the decorrelation time between the two pulses is increased to 400 ± 100 ps, which is also attributed to either a mobile exciton component or to the decay of a quenching state of the reaction center. At low pulse intensities (below approx. 2 · 1012 photons per cm2) anomalous fluorescence enhancement effects are noted, which are clearly linked to the existence of initially open PS II reaction centers. These enhancement effects are different from the well-known fluorescence induction phenomena which occur on longer time-scales, and are tentatively attributed to variations in the quenching efficiencies of transitory photochemical states of PS II reaction centers.  相似文献   

15.
The dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT state formation and decay were determined after femtosecond UV laser excitation and picosecond pulsed X-ray excitation, in an N,N-dimethylformamide (DMF) solution as well as in its solid form. At room temperature, after UV excitation, this MLCT excited state emits both in DMF solution and in the solid form. Transient absorption spectra were measured in solution at various delay times following excitation by a 160 fs, 390 nm laser pulse. There was a prompt absorption increase at around 460 nm occurring within the pump probe convolution (<1 ps), which was assigned to the formation of the 3MLCT state. This transient absorbance was constant over 100 ps. In contrast to the solution state, in the solid state, the emission maximum slightly red-shifts with increasing time after laser excitation. In both solid and solution the emission rises within the system response time. The solid sample exhibited a 1.4 ns emission decay that was not observed for the solution sample. The emission rise from a solid sample after 20 ps pulsed X-ray excitation was significantly slower than the system's time resolution. It is proposed that kinetically energetic electrons are ejected following X-ray induced ionisation, creating ionised tracks in which energetic cations and electrons take time to recombine yielding delayed 3MLCT states that emit.  相似文献   

16.
We have prepared heavy metal oxide glasses containing metallic copper nanoparticles with promising nonlinear optical properties which were determined by Z-scan and pump-probe measurements using femtosecond laser pulses. For the wavelengths within the plasmon band, we have observed saturable absorption and response times of 2.3 ps. For the other regions of the spectrum, reverse saturable absorption and lifetimes shorter than 200 fs were verified. The nonlinear refractive index is about 2.0?×?10?19 m2/W from visible to telecom region, thus presenting an enhancement effect at wavelengths near the plasmon and Cu+2 d–d band.  相似文献   

17.
《BBA》1987,893(2):320-332
The primary charge separation in Photosystem I of pea chloroplasts was measured as a photovoltage in the pico- and nanosecond time range by applying laser flashes at 532 nm of variable energy and different duration (12 ns and 30 ps, respectively). Contributions to the photovoltage from Photosystem II was eliminated by addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The dependence of the photovoltage amplitude on the excitation energy could be described by an exponential saturation law when the excitation flash had a duration of 12 ns. Nearly the same dependence was found when the excitation source was the train of a mode-locked laser (approx. ten 30-ps flashes spaced by 7 ns; highest energy of a single flash, 80 μJ / cm−2). Even with single 30-ps flashes the photovoltage was only slightly smaller than the one elicited by 12-ns flashes of the same energy. These findings demonstrate that trapping of excitation energy by the reaction center of Photosystem I is much more effective than losses by annihilation and other loss processes. The photovoltage yield was nearly independent of the fraction of closed traps, thus demonstrating that the absorption cross section of Photosystem I is not altered by the closing of its reaction centers. By recording the rise time of the photovoltage with our highest time resolution we found that the trapping rate of the excitation energy in Photosystem I depended on the energy of the 30-ps flashes: at low excitation energies (less than 1014 photons / cm2 per pulse) trapping occurred within 90 ± 15 ps and at high excitation energy (1015 photons / cm2 per pulse) trapping and charge stabilization occurred within the time resolution of the apparatus, i.e., up to 50 ps. The trapping rate at low energies is in agreement with the one determined by fluorescence decay kinetics. Up to 50 ns there was no further detectable electrogenic phase (neither forward nor backward reactions). This demonstrates that all the electrogenicity, produced by the charge separation, takes place in less than 50 ps.  相似文献   

18.
The transfer of excitation energy between phycobiliproteins in isolated phycobilisomes has been observed on a picosecond time scale. The photon density of the excitation pulse has been carefully varied so as to control the level of exciton interactions induced in the pigment bed. The 530 nm light pulse is absorbed predominantly by B-phycoerythrin, and the fluorescence of this component rises within the pulse duration and shows a mean 1/e decay time of 70 ps. The main emission band, centred at 672 nm, is due to allophycocyanin and is prominent because of the absence of energy transfer to chlorophyll. Energy transfer to this pigment from B-phycoerythrin via R-phycocyanin produces a risetime of 120 ps to the fluorescence maximum. The lifetime of the allophycocyanin fluorescence is found to be about 4 ns using excitation pulses of low photon densities (1013 photons · cm?2), but decreases to about 2 ns at higher photon densities. The relative quantum yield of the allophycocyanin fluorescence decreases almost 10 fold over the range of laser pulse intensities, 1013–1016 photons · cm?2. Fluorescence quenching by exciton-exciton annihilation is only observed in allophycocyanin and could be a consequence of the long lifetime of the single exciton in this pigment.  相似文献   

19.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10?11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been recorded within the 650 to 800 nm spectral region.We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps (τI) and Photosystem II fluoresces with a lifetime of 300 ps (τII). Fluorescence with a lifetime of 4500 ps (τIII) may be interpreted as originating from chlorophyll monomeric forms which are not involved in photosynthesis.It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corresponds to the time of energy migration to them from carotenoids.  相似文献   

20.
Ion beam acceleration is simulated using a one-dimensional 1D2P PIC code. The dependences of the maximum energy and width of the energy spectrum of the generated ion beams on the duration and intensity of laser radiation, as well as on the target parameters (thickness and number of layers, types and densities of atoms), are investigated. The optimal target configuration at which the energy of the accelerated ions is maximum (5–160 MeV for intensities of 5 × 1018 −5 × 1020 W/cm2) is found. The optimal target configuration is shown to depend on the intensity and be independent of the laser pulse duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号