首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
M A Griep  C S McHenry 《Biochemistry》1988,27(14):5210-5215
The beta subunit of Escherichia coli DNA polymerase III holoenzyme binds Mg2+. Reacting beta with fluoresceinmaleimide (FM) resulted in one label per beta monomer with full retention of activity. Titration of FM-beta with Mg2+ resulted in a saturable 11% fluorescence enhancement. Analysis indicated that there was one noncooperative magnesium binding site per beta monomer with a dissociation constant of 1.7 mM. Saturable fluorescence enhancement was also observed when titration was with Ca2+ or spermidine(3+) but not with the monovalent cations Na+ and K+. The Mg2+-induced fluorescence enhancement was specific for FM-beta and was not observed with FM-glutathione, dimethoxystilbenemaleimide-beta, or pyrenylmaleimide-beta. Gel filtration studies indicated that the beta dimer-monomer dissociation occurred at physiologically significant beta concentrations and that the presence of 10 mM Mg2+ shifted the dimer-monomer equilibrium to favor monomers. Both the gel-filtered dimers and the gel-filtered monomers were active in the replication assay. These and other results suggested that the fluorescence increase which accompanies beta dissociation is due to a relief from homoquenching of FM when the beta dimer dissociates into monomers.  相似文献   

2.
ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme in the energy metabolism of Mycobacterium tuberculosis; however, no biochemical data are available to characterize the role of ATP synthase in slow-growing mycobacterial strains. Here, we show that inverted membrane vesicles from the slow-growing model strain Mycobacterium bovis BCG are active in ATP synthesis, but ATP synthase displays no detectable ATP hydrolysis activity and does not set up a proton-motive force (PMF) using ATP as a substrate. Treatment with methanol as well as PMF activation unmasked the ATP hydrolysis activity, indicating that the intrinsic subunit ? and inhibitory ADP are responsible for the suppression of hydrolytic activity. These results suggest that the enzyme is needed for the synthesis of ATP, not for the maintenance of the PMF. For the development of new antimycobacterial drugs acting on ATP synthase, screening for ATP synthesis inhibitors, but not for ATP hydrolysis blockers, can be regarded as a promising strategy.  相似文献   

3.
Escherichia coli UvrD is an SF1A (superfamily 1 type A) helicase/translocase that functions in several DNA repair pathways. A UvrD monomer is a rapid and processive single-stranded DNA (ssDNA) translocase but is unable to unwind DNA processively in vitro. Based on data at saturating ATP (500?μM), we proposed a nonuniform stepping mechanism in which a UvrD monomer translocates with biased (3' to 5') directionality while hydrolyzing 1 ATP per DNA base translocated, but with a kinetic step size of 4-5?nt/step, suggesting that a pause occurs every 4-5?nt translocated. To further test this mechanism, we examined UvrD translocation over a range of lower ATP concentrations (10-500?μM ATP), using transient kinetic approaches. We find a constant ATP coupling stoichiometry of ~1 ATP/DNA base translocated even at the lowest ATP concentration examined (10?μM), indicating that ATP hydrolysis is tightly coupled to forward translocation of a UvrD monomer along ssDNA with little slippage or futile ATP hydrolysis during translocation. The translocation kinetic step size remains constant at 4-5?nt/step down to 50?μM ATP but increases to ~7?nt/step at 10?μM ATP. These results suggest that UvrD pauses more frequently during translocation at low ATP but with little futile ATP hydrolysis.  相似文献   

4.
ATP-binding cassette (ABC) systems are found in all three domains of life and in some giant viruses and form one of the largest protein superfamilies. Most family members are transport proteins that couple the free energy of ATP hydrolysis to the translocation of solutes across a biological membrane. The energizing module is also used to drive non-transport processes associated, e.g., with DNA repair and protein translation. Many ABC proteins are of considerable medical importance. In humans, dysfunction of at least eighteen out of 49 ABC transporters is associated with disease, such as cystic fibrosis, Tangier disease, adrenoleukodystrophy or Stargardt’s macular degeneration. In prokaryotes, ABC proteins confer resistance to antibiotics, secrete virulence factors and envelope components, or mediate the uptake of a large variety of nutrients. Canonical ABC transporters share a common structural organization comprising two transmembrane domains (TMDs) that form the translocation pore and two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP. In this Mini-Review, we summarize recent structural and biochemical data obtained from both prokaryotic and eukaryotic model systems.  相似文献   

5.
Cooperativity in ATP hydrolysis by GroEL is increased by GroES.   总被引:3,自引:0,他引:3  
T E Gray  A R Fersht 《FEBS letters》1991,292(1-2):254-258
The kinetics of ATP hydrolysis by the 'molecular chaperone' GroEL and the inhibition of this hydrolysis by GroES have been studied in more detail. It is shown that the hydrolysis of ATP by GroEL is cooperative with respect to ATP with a Hill coefficient of 1.86 (+/- 0.13). In the presence of GroES, there is an increase in the degree of cooperativity with a Hill coefficient of 3.01 (+/- 0.18). The observed cooperativity is not due to dissociation of the GroEL oligomer into smaller units but more probably involves structural changes within the GroEL oligomer.  相似文献   

6.
The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 did not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process.  相似文献   

7.
The Escherichia coli RecF protein possesses a weak ATP hydrolytic activity. ATP hydrolysis leads to RecF dissociation from double-stranded (ds)DNA. The RecF protein is subject to precipitation and an accompanying inactivation in vitro when not bound to DNA. A mutant RecF protein that can bind but cannot hydrolyze ATP (RecF K36R) does not readily dissociate from dsDNA in the presence of ATP. This is in contrast to the limited dsDNA binding observed for wild-type RecF protein in the presence of ATP but is similar to dsDNA binding by wild-type RecF binding in the presence of the nonhydrolyzable ATP analog, adenosine 5'-O-(3-thio)triphosphate (ATPgammaS). In addition, wild-type RecF protein binds tightly to dsDNA in the presence of ATP at low pH where its ATPase activity is blocked. A transfer of RecF protein from labeled to unlabeled dsDNA is observed in the presence of ATP but not ATPgammaS. The transfer is slowed considerably when the RecR protein is also present. In competition experiments, RecF protein appears to bind at random locations on dsDNA and exhibits no special affinity for single strand/double strand junctions when bound to gapped DNA. Possible roles for the ATPase activity of RecF in the regulation of recombinational DNA repair are discussed.  相似文献   

8.
The movement of microglia is regulated mainly by P1 and P2 purinergic receptors, which are activated by various nucleotides and their metabolites. Recently, such purinergic signalling has been spotlighted because of potential roles in the pathophysiologies of neurodegenerative and neuropsychiatric disorders. To understand the characteristics of microglia in relation of P1 and P2 signalling, we investigated the ectoenzymes expressed in microglia. At first, we profiled the expression of all known ectoenzymes in cultured microglia. We found that, like NTPDase1 (ectonucleoside triphosphate diphosphohydrolase 1, CD39), NPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1, PC-1) is also highly expressed in primary cultured murine microglia. Knockdown of NPP1 significantly reduced ATP hydrolysis and Pi production in cultured microglia. In addition, the knockdown of NPP1 enhanced basal nucleotide-stimulating responses of cultured microglia, such as phagocytosis and cell migration, and these results were very similar to NTPDase1 knockdown results. Moreover, inhibition of the adenosine receptors by caffeine treatment reduced phagocytosis of NPP1 knock downed-cultured microglia. In conclusion, we suggest that these potent ectoenzymes of primary cultured murine microglia, NPP1 together with CD73 (ecto-5′-nucleotidase) maintain the adenosine levels for triggering nucleotide-stimulating responses.  相似文献   

9.
Williams NL  Maxwell A 《Biochemistry》1999,38(43):14157-14164
Supercoiling by DNA gyrase involves the passage of one segment of double-stranded DNA through another. This requires a DNA duplex to be cleaved and the broken ends separated by at least 20 A. This is accomplished by the opening of a dimer interface, termed the DNA gate, which is covalently attached to the broken ends of the DNA. After strand passage, the DNA gate closes allowing the reunion of the broken ends. We have cross-linked the DNA gate of gyrase using cysteine cross-linking to block gate opening. We show that this locked gate mutant can bind quinolone drugs and perform DNA cleavage. However, locking the DNA gate prevents strand passage and the ability of DNA to stimulate ATP hydrolysis. We discuss the mechanistic implications of these results.  相似文献   

10.
To clarify the role of ATP in proteolysis, we studied archaeal 20S proteasomes and the PAN (proteasome-activating nucleotidase) regulatory complex, a homolog of the eukaryotic 19S ATPases. PAN's ATPase activity was stimulated similarly by globular (GFPssrA) and unfolded (casein) substrates, and by the ssrA recognition peptide. Denaturation of GFPssrA did not accelerate its degradation or eliminate the requirement for PAN and ATP. During degradation of one molecule of globular or unfolded substrates, 300-400 ATP molecules were hydrolyzed. An N-terminal deletion in the 20S alpha subunits caused opening of the substrate-entry channel and rapid degradation of unfolded proteins without PAN; however, degradation of globular GFPssrA still required PAN's ATPase activity, even after PAN-catalyzed unfolding. Thus, substrate binding activates ATP hydrolysis, which promotes three processes: substrate unfolding, gate opening in the 20S, and protein translocation.  相似文献   

11.
We investigate via stochastic simulation the overshoots observed in the fluorescence intensity of pyrene-labeled actin during rapid polymerization. We show that previous assumptions about pyrene intensity that ignore the intensity differences between subunits in different ATP hydrolysis states are not consistent with experimental data. This strong sensitivity of intensity to hydrolysis state implies that a measured pyrene intensity curve does not immediately reveal the true polymerization kinetics. We show that there is an optimal range of hydrolysis and phosphate release rate combinations simultaneously consistent with measured polymerization data from previously published severing and Arp2/3 complex-induced branching experiments. Within this range, we find that the pyrene intensity curves are described very accurately by the following average relative intensity coefficients: 0.37 for F-ATP actin; 0.55 for F-ADP + Pi actin; and 0.75 for F-ADP actin. Finally, we present an analytic formula, which properly accounts for the sensitivity of the pyrene assay to hydrolysis state, for estimation of the concentration of free barbed ends from pyrene intensity curves.  相似文献   

12.
Ban C  Junop M  Yang W 《Cell》1999,97(1):85-97
The MutL DNA mismatch repair protein has recently been shown to be an ATPase and to belong to an emerging ATPase superfamily that includes DNA topoisomerase II and Hsp90. We report here the crystal structures of a 40 kDa ATPase fragment of E. coli MutL (LN40) complexed with a substrate analog, ADPnP, and with product ADP. More than 60 residues that are disordered in the apoprotein structure become ordered and contribute to both ADPnP binding and dimerization of LN40. Hydrolysis of ATP, signified by subsequent release of the gamma-phosphate, releases two key loops and leads to dissociation of the LN40 dimer. Dimerization of the LN40 region is required for and is the rate-limiting step in ATP hydrolysis by MutL. The ATPase activity of MutL is stimulated by DNA and likely acts as a switch to coordinate DNA mismatch repair.  相似文献   

13.
Hereditary nonpolyposis colorectal cancer is caused by germline mutations in DNA mismatch repair genes. The majority of cases are associated with mutations in hMSH2 or hMLH1; however, about 12% of cases are associated with alterations in hMSH6. The hMSH6 protein forms a heterodimer with hMSH2 that is capable of recognizing a DNA mismatch. The heterodimer then utilizes its adenosine nucleotide processing ability in an, as of yet, unclear mechanism to facilitate communication between the mismatch and a distant strand discrimination site. The majority of reported mutations in hMSH6 are deletions or truncations that entirely eliminate the function of the protein; however, nearly a third of the reported variations are missense mutations whose functional significance is unclear. We analyzed seven cancer-associated single amino acid alterations in hMSH6 distributed throughout the functional domains of the protein to determine their effect on the biochemical activity of the hMSH2-hMSH6 heterodimer. Five alterations affect mismatch-stimulated ATP hydrolysis activity providing functional evidence that missense variants of hMSH6 can disrupt mismatch repair function and may contribute to disease. Of the five mutants that affect mismatch-stimulated ATP hydrolysis, only two (R976H and H1248D) affect mismatch recognition. Thus, three of the mutants (G566R, V878A, and D803G) appear to uncouple the mismatch binding and ATP hydrolysis activities of the heterodimer. We also demonstrate that these three mutations alter ATP-dependent conformation changes of hMSH2-hMSH6, suggesting that cancer-associated mutations in hMSH6 can disrupt the intramolecular signaling that coordinates mismatch binding with adenosine nucleotide processing.  相似文献   

14.
B Schwer  C Guthrie 《The EMBO journal》1992,11(13):5033-5039
PRP16 is an RNA-dependent ATPase that is required for the second catalytic step of pre-mRNA splicing. We have previously shown that PRP16 protein binds stably to spliceosomes that have completed 5' splice site cleavage and lariat formation. PRP16 then promotes 3' splice site cleavage and exon ligation in an ATP-dependent fashion. We now demonstrate that PRP16 can hydrolyse all nucleoside triphosphates and corresponding deoxynucleotides; complementation of the second catalytic step shows the same broad nucleotide specificity. These results link the nucleotide requirement of step 2 to PRP16. Interestingly, we find that PRP16 promotes a conformational change in the spliceosome which results in the protection of the 3' splice site against oligo-directed RNase H cleavage. This structural rearrangement is dependent on the hydrolysis of ATP, since ATP gamma S, a competitive inhibitor of the PRP16 ATPase activity, does not promote the protection of the 3' splice site and formation of mRNA.  相似文献   

15.
16.
For use in humans, human immunodeficiency virus (HIV) DNA vaccines may need to include immunostimulatory adjuvant molecules. CD40 ligand (CD40L), a member of the tumor necrosis factor (TNF) superfamily (TNFSF), is one candidate adjuvant, but it has been difficult to use because it is normally expressed as a trimeric membrane molecule. Soluble trimeric forms of CD40L have been produced, but in vitro data indicate that multimeric, many-trimer forms of soluble CD40L are more active. This multimerization requirement was evaluated in mice using plasmids that encoded either 1-trimer, 2-trimer, or 4-trimer soluble forms of CD40L. Fusion with the body of Acrp30 was used to produce the 2-trimer form, and fusion with the body of surfactant protein D was used to produce the 4-trimer form. Using plasmids for secreted HIV-1 antigens Gag and Env, soluble CD40L was active as an adjuvant in direct proportion to the valence of the trimers (1 < 2 < 4). These CD40L-augmented DNA vaccines elicited strong CD8(+) T-cell responses but did not elicit significant CD4(+) T-cell or antibody responses. To test the applicability of the multimeric fusion protein approach to other TNFSFs, a 4-trimer construct for the ligand of glucocorticoid-induced TNF family-related receptor (GITR) was also prepared. Multimeric soluble GITR ligand (GITRL) augmented the CD8(+) T-cell, CD4(+) T-cell, and antibody responses to DNA vaccination. In summary, multimeric CD40L and GITRL are new adjuvants for DNA vaccines. Plasmids for expressing multimeric TNFSF fusion proteins permit the rapid testing of TNFSF molecules in vivo.  相似文献   

17.
Coumarins are inhibitors of the ATP hydrolysis and DNA supercoiling reactions catalysed by DNA gyrase. Their target is the B subunit of gyrase (GyrB), encoded by the gyrB gene. The exact mode and site of action of the drugs is unknown. We have identified four mutations conferring coumarin resistance to Escherichia coli: Arg-136 to Cys, His or Ser and Gly-164 to Val. In vitro, the ATPase and supercoiling activities of the mutant GyrB proteins are reduced relative to the wild-type enzyme and show resistance to the coumarin antibiotics. Significant differences in the susceptibility of mutant GyrB proteins to inhibition by either chlorobiocin and novobiocin or coumermycin have been found, suggesting wider contacts between coumermycin and GyrB. We discuss the significance of Arg-136 and Gly-164 in relation to the notion that coumarin drugs act as competitive inhibitors of the ATPase reaction.  相似文献   

18.
Minichromosome maintenance proteins (Mcm) are essential in all eukaryotes and are absolutely required for initiation of DNA replication. The eukaryotic and archaeal Mcm proteins have conserved helicase motifs and exhibit DNA helicase and ATP hydrolysis activities in vitro. Although the Mcm proteins have been proposed to be the replicative helicase, the enzyme that melts the DNA helix at the replication fork, their function during cellular DNA replication elongation is still unclear. Using nucleoplasmic extract (NPE) from Xenopus laevis eggs and six purified polyclonal antibodies generated against each of the Xenopus Mcm proteins, we have demonstrated that Mcm proteins are required during DNA replication and DNA unwinding after initiation of replication. Quantitative depletion of Mcms from the NPE results in normal replication and unwinding, confirming that Mcms are required before pre-replicative complex assembly and dispensable thereafter. Replication and unwinding are inhibited when pooled neutralizing antibodies against the six different Mcm2-7 proteins are added during NPE incubation. Furthermore, replication is blocked by the addition of the Mcm antibodies after an initial period of replication in the NPE, visualized by a pulse of radiolabeled nucleotide at the same time as antibody addition. Addition of the cyclin-dependent kinase 2 inhibitor p21(cip1) specifically blocks origin firing but does not prevent helicase action. When p21(cip1) is added, followed by the non-hydrolyzable analog ATPgammaS to block helicase function, unwinding is inhibited, demonstrating that plasmid unwinding is specifically attributable to an ATP hydrolysis-dependent function. These data support the hypothesis that the Mcm protein complex functions as the replicative helicase.  相似文献   

19.
Methyl-directed mismatch repair is a coordinated process that ensures replication fidelity and genome integrity by resolving base pair mismatches and insertion/deletion loops. This post-replicative event involves the activities of several proteins, many of which appear to be regulated by MutL. MutL interacts with and modulates the activities of MutS, MutH, UvrD, and perhaps other proteins. The purified protein catalyzes a slow ATP hydrolysis reaction that is essential for its role in mismatch repair. However, the role of the ATP hydrolysis reaction is not understood. We have begun to address this issue using two point mutants: MutL-E29A, which binds nucleotide but does not catalyze ATP hydrolysis, and MutL-D58A, which does not bind nucleotide. As expected, both mutants failed to complement the loss of MutL in genetic assays. Purified MutL-E29A protein interacted with MutS and stimulated the MutH-catalyzed nicking reaction in a mismatch-dependent manner. Importantly, MutL-E29A stimulated the loading of UvrD on model substrates. In fact, stimulation of UvrD-catalyzed unwinding was more robust with MutL-E29A than the wild-type protein. MutL-D58A, on the other hand, did not interact with MutS, stimulate MutH-catalyzed nicking, or stimulate the loading of UvrD. We conclude that ATP-bound MutL is required for the incision steps associated with mismatch repair and that ATP hydrolysis by MutL is required for a step in the mismatch repair pathway subsequent to the loading of UvrD and may serve to regulate helicase loading.  相似文献   

20.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号