首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PD-1 (Programmed cell death protein-1) is mainly expressed in various immune cells, while its ligands PD-L1/PD-L2 (Programmed death ligand-1/Programmed death ligand-2) are mostly expressed in tumor cells. Generally, the binding of PD-L1/PD-L2 and PD-1 could lead to the tumor immune evasion. However, some recent studies showed that PD-1 could also be expressed in tumor cells and could activate mTOR (Mammalian Target of Rapamycin) or Hippo signaling pathway, therefore facilitating tumor proliferation independent of the immune system. While there was evidence that tumor cell-intrinsic PD-1 inhibited the activation of AKT and ERK1/2 pathways, thereby inhibiting tumor cell growth. Based on TCGA and CCLE database, we found that PD-1 was expressed in a variety of tumors and was associated with patient''s prognosis. Besides, we found that PD-1 may be involved in many carcinogenic signaling pathway on the basis of PD-1 gene enrichment analysis of cancer tissues and cancer cells. Our understanding of the tumor cell-intrinsic PD-1 function is still limited. This review is aimed at elaborating the potential effects of tumor cell-intrinsic PD-1 on carcinogenesis, providing a novel insight into the effects of anti-PD-1/PD-L1 immunotherapy, and helping to open a major epoch of combination therapy.  相似文献   

2.
Brain extracellular space (ECS) forms hindered pathways for molecular diffusion in chemical signaling and drug delivery. Hindrance is quantified by the tortuosity lambda; the tortuosity obtained from simulations using uniformly spaced convex cells is significantly lower than that measured experimentally. To attempt to account for the difference in results, this study employed a variety of ECS models based on an array of cubic cells containing open rectangular cavities that provided the ECS with dead-space microdomains. Monte Carlo simulations demonstrated that, in such ECS models, lambda can equal or exceed the typical experimental value of about 1.6. The simulations further revealed that lambda is relatively independent of cavity shape and the number of cavities per cell. It mainly depends on the total ECS volume fraction alpha, the cavity volume fraction alpha(c), and whether the cavity is located at the center of a cell face or formed at the junction of multiple cells. To describe the results from the different ECS models, an expression was obtained that related lambda to alpha, alpha(c), and an empirical exit factor beta that correlated with the ease with which a molecule could leave a cavity and its vicinity.  相似文献   

3.
The NKG2D receptor: sensing stressed cells   总被引:1,自引:0,他引:1  
The activating killer cell lectin-like receptor NKG2D plays a key role in the natural killer (NK) cell-mediated lysis of tumours and infected cells. Unlike other receptors, the ligands recognised by NKG2D are 'induced-self' ligands on stressed cells. This system requires precise regulation because inappropriate expression of NKG2D ligands might compromise NK cell activation. For therapeutic purposes it is essential to understand the mechanisms that regulate the expression and function of the NKG2D system. This review focuses on the importance of the signalling pathways involved in the regulation of the NKG2D receptor and its ligand expression in arming the immune response against infected or tumour cells and for the identification of new molecular targets and therapeutic strategies.  相似文献   

4.
The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related ‘phytocannabinoid’ compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the ‘endocannabinoids’ and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness.  相似文献   

5.
PURPOSE OF REVIEW: Toll-like receptors are key regulators of both innate and adaptive immune responses. This review outlines the recently emerged multiple roles of Toll-like receptor signaling in atherosclerosis. RECENT FINDINGS: Mice deficient in TLR4, TLR2 and MyD88 all have reduced atherosclerosis which establishes that Toll-like receptor-dependent pathways contribute to disease development. Although it is likely that total "infectious burden" contributes to atherosclerosis progression, endogenous ligands may also initiate and modulate Toll-like receptor signaling pathways. CD36, with established roles in recognition of endogenous ligands and atherosclerotic disease, facilitates TLR2 signaling and might therefore represent a bridge between endogenous lipid ligands and Toll-like receptor pathways. Furthermore, lipoprotein oxidation generates ligands that activate Toll-like receptor pathways. At the same time, Toll-like receptor activation may be inhibited by accumulating oxidized phospholipids, which could result in reduced dendritic cell maturation and impaired immunological priming. SUMMARY: Activation of Toll-like receptor signaling can promote atherosclerosis by multiple mechanisms, while some beneficial Toll-like receptor pathways may be inhibited by lipid accumulation. Due to their central role in the disease process, Toll-like receptor signaling pathways represent a target of immunomodulatory therapy with the goal of tipping the balance from excessive chronic inflammation towards resolution of inflammation, while not compromising host defense or atheroprotective immune functions.  相似文献   

6.
Inhibition of multiple signaling pathways in a cancer cell with a single molecule could result in better therapies that are simpler to administer. Efficacy may be achieved with reduced potency against individual targets if there is synergy through multiple pathway inhibition. To achieve this, it is necessary to be able to build multi-component ligands by joining together key pharmacophores in a way which maintains sufficient activity against the individual pathways. In this work, designed triple inhibiting ligands are explored aiming to block three completely different target types: a kinase (JAK2), an epigenetic target (HDAC) and a chaperone (HSP90). Although these enzymes have totally different functions they are related through inter-dependent pathways in the developing cancer cell. Synthesis of several complex multi-inhibiting ligands are presented along with initial enzyme inhibition data against 3 biological target classes of interest. A lead compound, 47, was discovered which had low micromolar activity for all 3 targets. Further development of these complex trispecific designed multiple ligands could result in a ‘transient drug’, an alternative combination therapy for treating cancer mediated via a single molecule.  相似文献   

7.
Endogenous cardiotonic steroids (ECS) are putative ligands of the inhibitory binding site of the membrane sodium pump (Na+, K+-ATPase). There is growing evidence that cardiotonic steroids may promote the growth of cardiac and vascular myocytes, including evidence indicating growth stimulation at concentrations in the same range as circulating ECS concentrations. We investigated four parameters to determine whether ouabain, a proposed ECS, promotes growth of immortalized rat proximal tubule epithelial cells: cell count by hemocytometer; metabolic activity as reflected in the mitochondrial conversion of the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, to its formazan product (MA); DNA synthesis reflected as bromodeoxyuridine incorporation (DNA); and mitosis reflected as histone phosphorylation state detected using anti-phosphohistone 3 antibody (HP). Maximum stimulatory responses were observed at 1 nm ouabain (MA, 20.3% increase, p < 0.01; DNA, 28.4% increase, p < 0.001; HP, maximum response at 0.5 h, 50% increase, p < 0.001). We observed that growth stimulation was associated with stimulation of ERK1/2 phosphorylation (ERK-P), and both growth and ERK-P could be blocked by the MEK inhibitor (U0126, 100 nm). Western blot analysis revealed that the only alpha isoform of Na+, K+-ATPase that could be detected in these cultures was the highly ouabain-resistant alpha1 isoform. Measurement of ouabain inhibition of ion transport in these cultures using 86Rb+ uptake revealed the predominance of the expected ouabain-resistant isoform (IC50 = 24 microm) and an additional minor ( approximately 15%) ouabain-sensitive inhibition with IC50 approximately 30 pm. Similar bimodal transport inhibition curves were obtained in freshly dissected rat proximal tubules. These results indicate that renal epithelial cells may be a sensitive target of the ERK1/2-activating and growth-promoting effects of ouabain even in the presence of ouabain-resistant Na+, K+-ATPase.  相似文献   

8.
1. Emerging evidence indicates that brain-derived neurotrophic factor (BDNF) and its receptor TrkB play important roles in the mechanism of action of electroconvulsive shock (ECS) treatment. ECS produces a significant increase in brain BDNF synthesis together with a variety of neuroplastic changes including neurogenesis and axonal sprouting in the rodent brain, which is believed to be associated to the antidepressant effect of ECS. ERK1/2 (extracellular signal-regulated kinase-1/2) and Akt (protein kinase B), both intracellular signaling molecules being linked to neurotrophin signaling and synthesis, are important pathways triggered by TrkB autophosphorylation. 2. We have previously observed that chemical antidepressants induce a rapid activation of TrkB signaling in the rodent prefrontal cortex (PFC), which is likely a consequence of the stimulatory effect of antidepressants on BDNF synthesis. However, it is not known whether ECS triggers TrkB autophosphorylation and if any ECS-induced effect on TrkB function may be associated with the activation of the ERK1/2 and Akt pathways. 3. The present study assayed the phosphorylation levels of TrkB, ERK1/2, and Akt in the PFC of sham and ECS-treated rats. While the TrkB autophosphorylation (pTrkB) levels were decreased 30 min after both acute and chronic ECS, no change in pTrkB levels were observed at any other time points measured. In contrast, acute but not chronic ECS, transiently induced a very rapid and robust hyperphosphorylation of ERK1/2. Akt phosphorylation levels remained unchanged following acute or chronic ECS. Hence, although ECS effectively stimulates the ERK1/2 pathway in the PFC, this effect does not appear to involve upstream activation of TrkB.  相似文献   

9.
《Endocrine practice》2007,13(7):790-804
ObjectiveTo review the role of the endogenous cannabinoid system (ECS) in the peripheral and central regulation of food intake, appetite, and energy storage and discuss the potential for the ECS to be an important target for lowering cardiovascular risk.MethodsMaterials used for this article were identified through a MEDLINE search of the pertinent literature (1975 to present), including English-language randomized controlled, prospective, cohort, review, and observational studies. We summarize the available experimental and clinical data.ResultsThe ECS is composed of two 7-transmembrane G protein-coupled cannabinoid receptor subtypes, CB1 and CB2, endogenous cannabinoid ligands (anandamide and 2-arachidonoylglycerol), and the enzymes that synthesize and break down the ligands. Understanding the role of the ECS in central and peripheral metabolic processes related to the regulation of food intake and energy balance as well as the endocrine role of excess adipose tissue, particularly visceral adipose tissue, and its promotion of global cardiometabolic risk has led to the development of pharmacologic agents with potential for blockade of CB1 receptors. In several studies, rimonabant (20 mg daily) demonstrated a favorable effect on various risk factors for cardiovascular disease, including dyslipidemia, abdominal obesity, insulin resistance, blood pressure, and measures of inflammation.ConclusionThe ECS has been shown to have a key role in the regulation of energy balance, and modulation of this system may affect multiple cardiometabolic risk factors. Clinical studies involving pharmacologic blockade of CB1 receptors in overweight patients with and without type 2 diabetes have demonstrated effective weight loss and improvements in several risk factors for cardiovascular disease. (Endocr Pract. 2007;13:790-804)  相似文献   

10.
The diffusion of neuroactive substances in the extracellular space (ECS) plays an important role in short- and long-distance communication between nerve cells and is the underlying mechanism of extrasynaptic (volume) transmission. The diffusion properties of the ECS are described by three parameters: 1. ECS volume fraction alpha (alpha=ECS volume/total tissue volume), 2. tortuosity lambda (lambda2=free/apparent diffusion coefficient), reflecting the presence of diffusion barriers represented by, e.g., fine neuronal and glial processes or extracellular matrix molecules and 3. nonspecific uptake k'. These diffusion parameters differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Moreover, diffusion barriers may channel the migration of molecules in the ECS, so that diffusion is facilitated in a certain direction, i.e. diffusion in certain brain regions is anisotropic. Changes in the diffusion parameters have been found in many physiological and pathological states in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances in the CNS and thus extrasynaptic transmission, neuron-glia communication, transmitter "spillover" and synaptic cross-talk as well as cell migration, drug delivery and treatment.  相似文献   

11.
G protein-coupled receptor (GPCR) signaling cascades may be key substrates for the antidepressant effects of chronic electroconvulsive seizures (ECS). To better understand changes in these signaling pathways, alterations in levels of mRNA's encoding regulators of G protein signaling (RGS) protein subtypes-2, -4, -7, -8 and -10 were evaluated in rat brain using northern blotting and in situ hybridization. In prefrontal cortex, RGS2 mRNA levels were increased several-fold 2 h following an acute ECS. Increases in RGS8 mRNA were of lesser magnitude (30%), and no changes were evident for the other RGS subtypes. At 24 h following a chronic ECS regimen, RGS4, -7, and -10 mRNA levels were reduced by 20-30%; only RGS10 was significantly reduced 24 h after acute ECS. Levels of RGS2 mRNA were unchanged 24 h following either acute or chronic ECS. In hippocampus, RGS2 mRNA levels were markedly increased 2 h following acute ECS. More modest increases were seen for RGS4 mRNA expression, whereas levels of the other RGS subtypes were unaltered. At 24 h following chronic ECS, RGS7, -8 and -10 mRNA levels were decreased in the granule cell layer, and RGS7 and -8 mRNA levels were decreased in the pyramidal cell layers. Only RGS8 and -10 mRNA levels were significantly reduced in hippocampus 24 h following an acute ECS. Paralleling neocortex, RGS2 mRNA content was unchanged in hippocampus 24 h following either acute or chronic ECS. In ventromedial hypothalamus, RGS4 mRNA content was increased 24 h following chronic ECS, whereas RGS7 mRNA levels were only increased 24 h following an acute ECS. The increased RGS4 mRNA levels in hypothalamus were significant by 2 h following an acute ECS. These studies demonstrate subtype-, time-, and region-specific regulation of RGS proteins by ECS, adaptations that may contribute to the antidepressant effects of this treatment.  相似文献   

12.
Mast cells are found abundant at sites of acupoints. Nerve cells share perivascular localization with mast cells. Acupuncture (mechanical stimuli) can activate mast cells to release adenosine triphosphate (ATP) which can activate nerve cells and modulates pain-processing pathways in response to acupuncture. In this paper, a mathematical model was constructed for describing intracellular Ca2+ signal and ATP release in a coupled mast cell and nerve cell system induced by mechanical stimuli. The results showed mechanical stimuli lead to a intracellular Ca2+ rise in the mast cell and ATP release, ATP diffuses in the extracellular space (ECS) and activates the nearby nerve cells, then induces electrical current in the nerve cell which spreads in the neural network. This study may facilitate our understanding of the mechanotransduction process induced by acupuncture and provide a methodology for quantitatively analyzing acupuncture treatment.  相似文献   

13.
The NOTCH signalling pathway is one of the key molecular pathways of embryonic development and adult tissues homeostasis in mammals. Mammals have four NOTCH receptors and various ligands that modulate their activity. Many cell disorders, whose genesis involves the NOTCH signalling pathway, have been discovered, including cancer. The mechanisms by which these receptors and their ligands affect liver cell transformation are not yet well understood, and they seem to behave as both oncogenes and tumour‐suppressor proteins. In this review, we discuss the published data regarding the role of these proteins in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma malignancies. The alteration of the NOTCH signalling pathway may be one of the main drivers of hepatic neoplastic growth. However, this signalling pathway might also modulate the development of specific liver tumour features. The complexity of the function of NOTCH receptors and their ligands may be due to their interactions with many other cell signalling pathways. Furthermore, the different levels of expression and activation of these receptors could be a reason for their distinct and sometimes contradictory effects.  相似文献   

14.
Double fertilization is an innovative phenomenon in angiosperms, in which one sperm cell first fuses with the egg cell to produce the embryo, and then the other sperm fuses with the central cell to produce the endosperm. However, the molecular mechanism of the preferential fertilization of egg cells is poorly understood. In this study, we report that two egg cell-secreted aspartic proteases, ECS1 and ECS2, play an important role in promoting preferential fertilization of egg cells in Arabidopsis. We show that simultaneous loss of ECS1 and ECS2 function resulted in an approximately 20% reduction in fertility, which can be complemented by the full-length ECS1/2 but not by corresponding active site mutants or by secretion-defective versions of ECS1/2. Detailed phenotypic analysis revealed that the egg cell–sperm cell attachment was compromised in ecs1 ecs2 siliques. Limited pollination assays with cyclin-dependent kinase a1 (cdka;1) pollen showed that preferential egg cell fertilization was impaired in the ecs1 ecs2 mutant. Taken together, these results demonstrate that egg cells secret two aspartic proteases, ECS1 and ECS2, to facilitate the attachment of sperm cells to egg cells so that preferential fertilization of egg cells is achieved. This study reveals the molecular mechanism of preferential fertilization in Arabidopsis thaliana.  相似文献   

15.
Extrasynaptic volume transmission, mediated by the diffusion of neuroactive substances in the extracellular space (ECS), plays an important role in short- and long-distance communication between nerve cells. The ability of a substance to reach extrasynaptic high-affinity receptors via diffusion depends on the ECS diffusion parameters, ECS volume fraction alpha (alpha=ECS volume/total tissue volume) and tortuosity lambda (lambda2=free/apparent diffusion coefficient), which reflects the presence of diffusion barriers represented by, e.g., fine astrocytic processes or extracellular matrix molecules. These barriers channel the migration of molecules in the ECS, so that diffusion may be facilitated in a certain direction, i.e. anisotropic. The diffusion parameters alpha and lambda differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Changes in diffusion parameters have been found in many physiological and pathological states, such as development and aging, neuronal activity, lactation, ischemia, brain injury, degenerative diseases, tumor growth and others, in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances and thus extrasynaptic transmission, neuron-glia communication, mediator "spillover" and synaptic crosstalk as well as, cell migration. The various changes occurring during pathological states can be important for diagnosis, drug delivery and treatment.  相似文献   

16.
Intracellular signaling pathways, which regulate the interactions of integrins with their ligands, affect a wide variety of biological functions. Here we provide evidence of how cytohesin-1, an integrin-binding protein and guanine-nucleotide exchange factor (GEF) for ARF GTPases, regulates cell adhesion. Mutational analyses of the beta-2 cytoplasmic domain revealed that the adhesive function of LFA-1 depends on its interaction with cytohesin-1, unless the integrin is activated by exogenous divalent cations. Secondly, cytohesin-1 induces expression of an extracellular activation epitope of LFA-1, and the exchange factor function is not essential for this activity. In contrast, LFA-1-mediated cell adhesion and spreading on intercellular cell adhesion molecule 1 is strongly inhibited by a cytohesin-1 mutant, which fails to catalyze ARF GDP-GTP exchange in vitro. Thus, cytohesin-1 is involved in the activation of LFA-1, most probably through direct interaction with the integrin, and induces cell spreading by its ARF-GEF activity. We therefore propose that both direct regulation of the integrin and concomitant changes in the membrane topology of adherent T cells are modulated by dissectable functions of cytohesin-1.  相似文献   

17.
Glial cells and volume transmission in the CNS   总被引:8,自引:0,他引:8  
Although synaptic transmission is an important means of communication between neurons, neurons themselves and neurons and glia also communicate by extrasynaptic "volume" transmission, which is mediated by diffusion in the extracellular space (ECS). The ECS of the central nervous system (CNS) is the microenvironment of neurons and glial cells. The composition and size of ECS change dynamically during neuronal activity as well as during pathological states. Following their release, a number of neuroactive substances, including ions, mediators, metabolites and neurotransmitters, diffuse via the ECS to targets distant from their release sites. Glial cells affect the composition and volume of the ECS and therefore also extracellular diffusion, particularly during development, aging and pathological states such as ischemia, injury, X-irradiation, gliosis, demyelination and often in grafted tissue. Recent studies also indicate that diffusion in the ECS is affected by ECS volume inhomogeneities, which are the result of a more compacted space in certain regions, e.g. in the vicinity of oligodendrocytes. Besides glial cells, the extracellular matrix also changes ECS geometry and forms diffusion barriers, which may also result in diffusion anisotropy. Glial cells therefore play an important role in extrasynaptic transmission, for example in functions such as vigilance, sleep, depression, chronic pain, LTP, LTD, memory formation and other plastic changes in the CNS. In turn, ECS diffusion parameters affect neuron-glia communication, ionic homeostasis and movement and/or accumulation of neuroactive substances in the brain.  相似文献   

18.
The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB1 type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions. Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB2 cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools. Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.  相似文献   

19.
The endocannabinoid system (ECS) is composed of two G protein-coupled receptors (GPCRs), the cannabinoid CB1 and CB2 receptors, and the two main endogenous lipid ligands of such receptors (also known as the “endocannabinoids”), anandamide and 2-arachidonoyl-glycerol. The ECS is a pleiotropic signalling system involved in all aspects of mammalian physiology and pathology, and for this reason it represents a potential target for the design and development of new therapeutic drugs. However, the endocannabinoids as well as some of their congeners also interact with a much wider range of receptors, including members of the Transient Receptor Potential (TRP) channels, Peroxisome Proliferator-Activated Receptors (PPARs), and other GPCRs. Indeed, following the discovery of the endocannabinoids, endocannabinoid-related lipid mediators, which often share the same metabolic pathways of the endocannabinoids, have also been identified or rediscovered. In this review article, we discuss the role of endocannabinoids and related lipids during physiological functions, as well as their involvement in some of the most common neurological disorders.  相似文献   

20.
Notch signalling: a simple pathway becomes complex   总被引:3,自引:0,他引:3  
A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号