首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective vascular compliance was measured repeatedly in dogs without circulatory arrest utilizing a closed-circuit venous bypass system and constant cardiac output. Compliance, determined by the delta V/delta P relationship at the end of a 1-min infusion of 5% of the circulating volume into the inferior vena cava, was independent of the initial venous pressure, total circulating volume and systemic arterial pressure. It remained constant over a 3 h experimental period at 1.55 plus or minus 0.05 ml (mm Hg)-1-kb-1 body weight. Elevation of mean left atrial pressure and mean pulmonary arterial pressure by gradual aortic constriction was associated with a large and significant reduction in vascular compliance to a value of 1.14 plus or minus 0.06 ml (mm Hg)-1-kg-1 after 2 h. This reduction was independent of the initial venous pressure and total circulating volume but was associated with the changes in left atrial and pulmonary artery pressures and an increase in plasma catecholamine concentrations. The mechanism responsible for the reduction in effective compliance is not clear from the present experiments. Increased circulating catecholamines and sympathetic nerve traffic resulting from baro- and volume receptor stimulation in the vascular tree may be the causative mechanism.  相似文献   

2.
This study is to explore the changes of arterial mechanical properties in streptozotocin (STZ)-diabetic rats, based on the exponentially tapered T-tube model. Rats given STZ 65 mg kg(-1)i.v. are compared with untreated weight- and age-matched controls. A high-fidelity pressure sensor and electromagnetic flow probe measured pulsatile pressure and flow waves in the ascending aorta, respectively. Diabetic rats exhibit isobaric vasodilatation that is characterized by an increase in cardiac output and no significant changes in aortic pressure. Total peripheral resistance of diabetic rats is lower than that of weight- and age-matched controls. Diabetic rats have higher total peripheral compliance (2.86+/-0.70 microl mm Hg(-1)) than do weight- (1.77+/-0.34 microl mm Hg(-1)) and age-matched (1.87+/-0.69 microl mm Hg(-1)) controls. Aortic characteristic impedance is reduced from 0.017+/-0.003 mm Hg min kg ml(-1)in weight- and 0.020+/-0.004 mm Hg min kg ml(-1)in age-matched controls to 0.010+/-0.004 mm Hg min kg ml(-1)in diabetic rats. Moreover, diabetic rats show shorter wave transit time in lower body circulation (17.86+/-1.91 ms) than do weight- (20.45+/-1.91) and age-matched (23.05+/-2.04 ms) controls. Under isobaric vasodilatation, the decreased resistance and increased compliance in peripheral circulation suggest that the contractile dysfunction of the smooth muscle cells may occur in resistance arterioles in diabetes. With unaltered aortic pressure, an impairment in aortic distensibility of STZ-diabetic rats is manifest on the reduced wave transit time rather than on the diminished aortic characteristic impedance.  相似文献   

3.
The purpose of this project was to collate canine cardiopulmonary measurements from published and unpublished studies in our laboratory in 97 instrumented, unsedated, normovolemic dogs. Body weight; arterial and mixed-venous pH and blood gases; mean arterial, pulmonary arterial, pulmonary artery occlusion, and central venous blood pressures; cardiac output; heart rate; hemoglobin; and core temperature were measured. Body surface area; bicarbonate concentration; base deficit; cardiac index; stroke volume index, systemic and pulmonary vascular resistance indices; left and right cardiac work indices; alveolar partial pressure of oxygen (pO2) ; alveolar-arterial pO2 gradient (A-apO2); arterial, mixed-venous, and pulmonary capillary oxygen content; oxygen delivery; oxygen consumption; oxygen extraction; venous admixture; arterial and mixed-venous blood CO2 contents; and CO2 production were calculated. In the 97 normal, resting dogs, mean arterial and mixed-venous pH were 7.38 and 7.36, respectively; partial pressure of carbon dioxide (pCO2), 40.2 and 44.1 mm Hg, respectively; base-deficit, -2.1 and -1.9 mEq/liter, respectively; pO2, 99.5 and 49.3 mm Hg, respectively; oxygen content, 17.8 and 14.2 ml/dl, respectively; A-a pO2 was 6.3 mm Hg; and venous admixture was 3.6%. The mean arterial blood pressure (ABPm), mean pulmonary arterial blood pressure (PAPm), pulmonary artery occlusion pressure (PAOP) were 103, 14, and 5.5 mm Hg, respectively; heart rate was 87 beats/min; cardiac index (CI) was 4.42 liters/min/m2; systemic and pulmonary vascular resistances were 1931 and 194 dynes.sec.cm-5, respectively; oxygen delivery, consumption and extraction were 790 and 164 ml/min/m2 and 20.5%, respectively. This study represents a collation of cardiopulmonary values obtained from a large number of dogs (97) from a single laboratory using the same measurement techniques.  相似文献   

4.
The effects of alpha-rat calcitonin gene-related peptide (alpha-rCGRP) on systemic and renal hemodynamics and on renal electrolyte excretion were examined in normal anesthetized rats. In one group of rats (n = 7), infusions of alpha-rCGRP at doses of 10, 50, 100, and 500 ng/kg/min for 15 min each produced dose-related and significant decreases in mean arterial pressure from a control of 130 +/- 3 mm Hg to a maximal depressor response of 91 +/- 2 mm Hg. During the first three doses of alpha-rCGRP, renal blood flow progressively and significantly increased from a control of 5.0 +/- 0.3 ml/min to a peak level of 6.3 +/- 0.3 ml/min achieved during the 100 ng/kg/min infusion. With the highest infusion rate of 500 ng/kg/min, renal blood flow fell below the control level to 4.5 +/- 0.2 ml/min (P less than 0.05). The responses in renal blood flow and mean arterial pressure were associated with reductions in renal vascular resistance. After cessation of alpha-rCGRP infusions, arterial pressure, renal blood flow, and renal vascular resistance gradually returned toward the baseline values. In another group of rats (n = 9), infusion of alpha-rCGRP for 30 min at 100 ng/kg/min produced a significant reduction in urinary sodium excretion from 0.28 +/- 0.06 to 0.14 +/- 0.5 muEq/min (P less than 0.05). Urine flow and urinary potassium excretion also appeared to decrease, but the changes were not significantly different (P greater than 0.05) from their respective baselines. These results demonstrate that alpha-rCGRP is a potent and reversible hypotensive and renal vasodilatory agent in the anesthetized rat. The data also suggest that alpha-rCGRP may have significant effects on the excretory function of the kidney.  相似文献   

5.
We hypothesized that nitric oxide (NO) opposes ANG II-induced increases in arterial pressure and reductions in renal, splanchnic, and skeletal muscle vascular conductance during dynamic exercise in normal and heart failure rats. Regional blood flow and vascular conductance were measured during treadmill running before (unblocked exercise) and after 1) ANG II AT(1)-receptor blockade (losartan, 20 mg/kg ia), 2) NO synthase (NOS) inhibition [N(G)-nitro-L-arginine methyl ester (L-NAME); 10 mg/kg ia], or 3) ANG II AT(1)-receptor blockade + NOS inhibition (combined blockade). Renal conductance during unblocked exercise (4.79 +/- 0.31 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased after ANG II AT(1)-receptor blockade (6.53 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.12 +/- 0.20 ml x 100 g(-1) x min(-1) x mmHg(-1)) and combined inhibition (3.96 +/- 0.57 ml x 100 g(-1) x min(-1) x mmHg(-1); all P < 0.05 vs. unblocked). In heart failure rats, renal conductance during unblocked exercise (5.50 +/- 0.66 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased by ANG II AT(1)-receptor blockade (8.48 +/- 0.83 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.68 +/- 0.22 ml x 100 g(-1) x min(-1) x mmHg(-1); both P < 0.05 vs. unblocked), but it was unaltered during combined inhibition (4.65 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)). Because our findings during combined blockade could be predicted from the independent actions of NO and ANG II, no interaction was apparent between these two substances in control or heart failure animals. In skeletal muscle, L-NAME-induced reductions in conductance, compared with unblocked exercise (P < 0.05), were abolished during combined inhibition in heart failure but not in control rats. These observations suggest that ANG II causes vasoconstriction in skeletal muscle that is masked by NO-evoked dilation in animals with heart failure. Because reductions in vascular conductance between unblocked exercise and combined inhibition were less than would be predicted from the independent actions of NO and ANG II, an interaction exists between these two substances in heart failure rats. L-NAME-induced increases in arterial pressure during treadmill running were attenuated (P < 0.05) similarly in both groups by combined inhibition. These findings indicate that NO opposes ANG II-induced increases in arterial pressure and in renal and skeletal muscle resistance during dynamic exercise.  相似文献   

6.
In one-day old humans and to 20 years of age, the stroke volume (SV) increases from 5.4 +/- 0.4 to 70 +/- 5 ml, the arterial systolic pressure (ASP)--from 60 +/- 5 to 120 +/- 10 mm Hg. Heart rate decreases to 70 +/- 4/min from 136 +/- 10/min at birth. The N coefficient as the SV/ASP ratio parameter grows from 0.1 in children to 0.6 by 20 years of age. The peripheral resistance in the arterial system scope from the left ventricle exit tract to the middle of the humeral artery amounts up to 76 mm Hg x ml(-1) x min(-1) in newborn infants and in adults it is reduced to 28. Reduction of post-load decreases 6-fold the total amount of the heart mechanical work of pumping the SV into the vascular system.  相似文献   

7.
Compared with arterial hemodynamics, there has been relatively little study of venous hemodynamics. We propose that the venous system behaves just like the arterial system: waves propagate on a time-varying reservoir, the windkessel, which functions as the reverse of the arterial windkessel. During later diastole, pressure increases exponentially to approach an asymptotic value as inflow continues in the absence of outflow. Our study in eight open-chest dogs showed that windkessel-related arterial resistance was approximately 62% of total systemic vascular resistance, whereas windkessel-related venous resistance was only approximately 7%. Total venous compliance was found to be 21 times larger than arterial compliance (n = 3). Inferior vena caval compliance (0.32 +/- 0.015 ml x mmHg(-1) x kg(-1); mean +/- SE) was approximately 14 times the aortic compliance (0.023 +/- 0.002 ml x mmHg(-1) x kg(-1); n = 8). Despite greater venous compliance, the variation in venous windkessel volume (i.e., compliance x windkessel pulse pressure; 7.8 +/- 1.1 ml) was only approximately 32% of the variation in aortic windkessel volume (24.3 +/- 2.9 ml) because of the larger arterial pressure variation. In addition, and contrary to previous understanding, waves generated by the right heart propagated upstream as far as the femoral vein, but excellent proportionality between the excess pressure and venous outflow suggests that no reflected waves returned to the right atrium. Thus the venous windkessel model not only successfully accounts for variations in the venous pressure and flow waveforms but also, in combination with the arterial windkessel, provides a coherent view of the systemic circulation.  相似文献   

8.
The cardiovascular effects of oral and intravenous administration of 0.05 and 0.1 mg/kg of the isosterically modified prostaglandin (PG) analog, (+)- 4-(3-[3-[2-(1-hydroxycyclohexyl)ethyl]-4-oxo-thiazolidinyl] propyl) benzoic acid were ascertained in conscious mongrels. After 0.05 mg/kg p.o., mean arterial pressure (MAP), obtained from indwelling catheters, fell from 105 +/- 1 to 100 +/- 4 mm Hg and total peripheral resistance (TPR) decreased from 0.062 +/- 0.006 to 0.039 +/- 0.002 mm Hg/ml/min. Cardiac output (CO), measured via electromagnetic flow probes, rose from 1.8 +/- 0.2 to 2.6 +/- 0.1 l/min and heart rate from 109 +/- 13 to 128 +/- 8 beats/min. The 0.1 mg/kg p.o. dose produced similar results. Intravenous injection of 0.1 mg/kg immediately dropped MAP from 103 +/- 6 to 58 +/- 3 mm Hg and TPR from 0.049 +/- .006 to .014 +/- .002 mm Hg/ml/min. CO climbed from 2.3 +/- 0.2 to 5.3 +/- 0.5 l/min and HR increased from 126 +/- 9 to 254 +/- 14 beats/min. Stroke volume was not affected by either oral or intravenous administration of the PG analog. Pretreatment with 100 micrograms/kg timolol blunted the CO and HR responses to 0.1 mg/kg iv of the PG analog without affecting the depressor response. Metaraminol infused during injection of 0.1 mg/kg iv of the PG analog diminished all responses. When compared to the cardiovascular effects of hydralazine and nitroprusside, the profile of the PG analog activity closely resembled that produced by the arterial vasodilator, hydralazine; in contrast, nitroprusside (which also dilates veins) reduced stroke volume, but did not significantly affect HR. In conclusion, dilation of the resistance vessels by the PG analog decreased MAP and TPR and reflexly elevated CO and HR in conscious dogs.  相似文献   

9.
Inhalation of endothelin (ET)-A receptor antagonists has been shown to improve gas exchange in experimental acute lung injury (ALI) but may induce side effects by increasing circulating ET-1 levels. We investigated whether the inhaled ET(A) receptor antagonist, LU-135252, at low doses, improves gas exchange without affecting ET-1 plasma concentrations and lung injury in an animal model of ALI. Twenty-two piglets were examined in a prospective, randomized, controlled study. In anesthetized animals, ALI was induced by surfactant depletion. Animals received either LU-135252 at a dose of 0.3 mg/kg during 20 mins (LU group; n = 11), or nebulization of saline buffer (control group; n = 11). The Mann-Whitney U test was used to compare groups (P < 0.05). In the LU group, arterial partial pressure of oxygen (PaO2) and mean pulmonary artery pressure (MPAP) improved compared with the control group (PaO2, 319 +/- 44 mm Hg vs. 57 +/- 3 mm Hg; MPAP, 32 +/- 2 mm Hg vs. 41 +/- 2 mm Hg; values at 6 hrs after induction of ALI; P < 0.05). Mean arterial pressure and cardiac output were not different between groups. ET-1 plasma concentrations increased from 0.96 +/- 0.06 fmol/ml after induction of ALI to a maximum of 1.17 +/- 0.09 fmol/ml at 3 hrs after ALI onset in the LU group and did not differ significantly from the control group (1.21 +/- 0.08 fmol/ml, not significant). On histologic examination, we found no differences in total lung injury score between groups. However, the LU group revealed significantly reduced interstitial inflammation and hemorrhage (P < 0.05 vs. control group). In this animal model of ALI, inhalation of LU-135252 at a dose of 0.3 mg/kg induced a significant and sustained improvement in gas exchange, whereas there were no changes in ET-1 plasma concentrations. Furthermore, our data indicate a trend toward decreased pulmonary inflammation in the group receiving the inhaled ET(A) receptor antagonist.  相似文献   

10.
The cardiovascular effects of oral and intravenous administration of 0.05 and 0.1 mg/kg of the isosterically modified prostaglandin (PG) analog, (+)-4-{3-[3-[2-(1-hydroxycyclohexyl)ethyl]-4-oxo-thiazolidinyl]propy} benzoic acid were ascertained in conscious mongrels. After 0.05 mg/kg p.o., mean arterial pressure (MAP), obtained from indwelling catheters, fell from 105 ± 1 to 100 ± 4 mm Hg and total peripheral resistance (TPR) decreased from 0.062 ± 0.006 to 0.039 ± 0.002 mm Hg/ml/min. Cardiac output (CO), measured via electromagnetic flow probes, rose from 1.8 ± 0.2 to 2.6 ± 0.1 l/ml and heart rate from 109 ± 13 to 128 ± 8 beats/min. The 0.1 mg/kg p.o. dose produced similar results. Intravenous injection of 0.1 mg/kg immediately dropped MAP from 103 ± 6 to 58 ± 3 mm Hg and TRP from 0.049 ± .006 to .014 ± .002 mm Hg/ml/min. CO climbed from 2.3 ± 0.2 to 0.2 to 5.3 ± 0.5 l/ml and HR increased from 126 ± 9 to 254 ± 14 beats/min. Stroke volume was not affected by either oral or intravenous administration of the PG analog. Pretreatment with 100 μg/kg timolol blunted the CO and HR responses to 0.1 mg/kg iv of the PG analog without affecting the depressor response. Metaramidol infused during injection of 0.1 mg/kg iv of the PG analog diminished all responses. When compared to the cardiovascular effects of hydralazine and nitroprusside, the profile of the PG analog activity closely resembled that produced by the arterial vasodilator, hydralazine; in contrast, nitroprusside (which also dilates veins) reduced stroke volume, but did not significantly affect HR. In conclusion, dilation of the resistance vessels by the PG analog decreased MAP and TPR and reflexly elevated CO and HR in conscious dogs.  相似文献   

11.
Monthly measurements of heart rate, mean arterial pressure, and cardiac output were made on active and hibernating marmots from the time of emergence from hibernation through the next hibernation period. From these measurements cardiac index, stroke index, and total peripheral resistance were calculated on the basis of estimated lean body mass. Heart rate was low after emergence (132 +/- 9.5 beats (B)/min), peaked in August (160 +/- 9.3 B/min), and then fell slightly in September and October. During hibernation heart rate fell to 9 +/- 1.1 B/min. Mean arterial pressure, which was low in early spring (101 +/- 6.9 mm Hg), rose to a peak value in June (131 +/- 7.7 mm Hg) and remained essentially unchanged until hibernation when it fell to 52 +/- 4.0 mm Hg. Cardiac index (61 +/- 4.9 ml/kg min) in March rose to a peak in May (83 +/- 8.5 ml/kg min) and fell linearly until October. There was an additional drop in cardiac index during hibernation (7.6 +/- 0.9 ml/kg min). Total peripheral resistance increased linearly from the time of emergence until October. Most of this change was due to the decrease in cardiac index. Stroke index showed no significant changes in the prehibernation period, but increased by 55% during hibernation. Maintenance of arterial pressure in the months preceding hibernation in the face of diminishing cardiac index indicate that alterations in vasomotor tone or shifts in patterns of blood flow occurred prior to the hibernation period.  相似文献   

12.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   

13.
Estimation of total systemic arterial compliance in humans   总被引:1,自引:0,他引:1  
Systemic arterial compliance, a major component of aortic input impedance, was determined in 10 patients with congestive heart failure secondary to idiopathic dilated cardiomyopathy and 11 age-matched control subjects found free of detectable cardiovascular disease. Total arterial compliance was determined from high-fidelity ascending aortic pressure and velocity recordings using 1) the traditional monoexponential aortic diastolic pressure decay and 2) the direct solution of the equation, which describes the three-element windkessel model of the arterial system. Resting values for total arterial compliance (x10(-3) cm5/dyn) derived from method 1 were significantly correlated with compliance derived from method 2 (r = 0.89, P less than 0.01). However, method 1 values (control mean 1.15 +/- 0.27, heart failure mean 1.18 +/- 0.54) were consistently and significantly lower (P less than 0.001) than method 2 values (control mean 1.59 +/- 0.50, heart failure mean 1.38 +/- 0.60). Resting total arterial compliance in heart-failure patients was not significantly different from control subjects. Total arterial compliance did not significantly change with exercise in either group despite increases in arterial pressure. However, nitroprusside administration in the heart-failure group increased total arterial compliance both at rest and on exercise compared with the unmedicated state. These different methodological approaches to the estimation of total arterial compliance in humans resulted in significantly different absolute values for compliance, although both methods provided concordant results with respect to the response of arterial compliance to physiological and pharmacological interventions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To determine the hemodynamic effects of a hypotensive dose of atrial natriuretic factor (ANF), a synthetic peptide containing 26 amino acids of endogenous rat ANF (Arg-Arg-Ser-Ser-Cys-Phe-Gly-Gly-Arg-Ile-Asp-Arg-Ile-Gly-Ala-Gln-Ser-Gly -Leu-Gly-Cys-Asn-Ser-Phe-Arg-Tyr-COOH) was studied in two groups of barbiturate anesthetized rats. In the first experiment, a 20-minute infusion of a hypotensive dose, 95 pmole/min i.v., of the synthetic ANF decreased mean arterial pressure (MAP) by 40 +/- 3 mm Hg from a baseline of 128 +/- 5 mm Hg, and cardiac output (CO) (microsphere method) by 7.8 +/- 1.8 ml/min/100 gm from a baseline of 23.5 +/- 1.3 ml/min/100 gm. Synthetic ANF did not significantly affect the total peripheral resistance (TPR) measured at the end of the 20-minute infusion. Sodium nitroprusside (SNP), infused at an equihypotensive dose of 20 micrograms/kg/min i.v., produced the same hemodynamic profile in seven other animals; in contrast, 0.3 mg/kg i.v. of hydralazine (n = 7) lowered MAP by 56 +/- 6 mm Hg and reduced TPR index by 3.0 +/- 0.6 mm Hg/ml/min/100 gm, but did not change CO. Other than an increase in coronary blood during SNF infusion, there were no significant changes in the distribution of cardiac output. Infusion of the saline vehicle had no significant effects on any of these parameters. The results of the second experiment in anesthetized rats confirmed that hypotensive doses of 40 and 100 pmole/kg/min i.v. lowered CO (dye dilution method) from a baseline of 33 +/- 6 to a minimum of 24 +/- 2 ml/min/100 gm (p less than 0.05) without affecting TPR. In addition, synthetic ANF did not significantly affect heart rate (HR) but it slightly reduced cardiac contractility (dp/dt50). These results suggest that the hypotensive dose of synthetic ANF reduced cardiac output, partially by diminishing stroke volume, and perhaps contractility.  相似文献   

15.
It has been reported that both sodium and chloride ions must be ingested to induce the elevated blood pressure of deoxycorticosterone acetate (DOCA)-salt-sensitive hypertension. This study was designed to determine the separate roles of the sodium and chloride ions in the altered hemodynamics underlying the high blood pressure. DOCA pellets (75 mg) were implanted in uninephrectomized rats and the animals were then fed one of four diets: (i) high sodium chloride, (ii) high sodium-low chloride, (iii) high chloride-low sodium, or (iv) low sodium chloride. Blood pressures were measured weekly by tail-cuff plethysmography for 5 weeks and the animals were then subjected to a terminal experiment to measure cardiac output by thermodilution technique, renal blood flow by electromagnetic flow probe, and direct arterial pressure. Blood pressure in the DOCA-high NaCl group was significantly greater (P less than 0.05) compared with that of the DOCA-low NaCl group (160 +/- 3 mm Hg vs 124 +/- 2 mm Hg, respectively) at 5 weeks after treatment; all other groups were not significantly different from the DOCA-low NaCl group. Cardiac output was significantly greater in DOCA-treated rats consuming diets high in sodium (44 +/- 2 ml/min/100 g) or sodium chloride (40 +/- 2 ml/min/100 g) compared with animals consuming low sodium chloride (31 +/- 2 ml/min/100 g; P less than 0.01 for each comparison). Direct intraarterial blood pressure and renal blood flow were used to calculate renal vascular resistance. Renal vascular resistance was increased in those DOCA-treated rats consuming diets high in chloride (42 +/- 3 mm Hg/ml/min/100 g) and high sodium chloride (54 +/- 3 mm Hg/ml/min/100 g) compared with rats consuming low sodium chloride (30 +/- 3 mm Hg/ml/min/100 g; P less than 0.01 for each). It appears that elevations in cardiac output are associated with increased dietary sodium and act in synergy with the elevations in renal vascular resistance associated with increased dietary chloride. Increases in both cardiac output and renal vascular resistance are involved in the maintenance of elevated blood pressure in the DOCA-salt-sensitive model of hypertension.  相似文献   

16.
Varying coronary volume will vary vascular resistance and thereby have an effect on coronary hemodynamics. Six ventricular septa were isolated from anesthetized dogs, dispersed in a biaxial stretch apparatus at diastolic stress, and perfused artificially with an oxygenated perfluorochemical emulsion at maximal vasodilation. Flow and thickness were measured continuously by an electromagnetic flow probe and sonomicrometer. Pressure was varied sinusoidally around 30, 50, and 70 mmHg with an amplitude of 7.5 mmHg; frequencies ranged between 0.015 and 7 Hz. Bode plots of admittance (flow/pressure) and capacitance (scaled thickness/pressure) were constructed. A two-compartment model was used in which the resistances vary with volume. Realistic values of microvascular compliance ( approximately 0.3 ml x mmHg(-1) x 100 g(-1)) were found. Values 10 times higher were then found when resistances were forced to be constant. We concluded that volume dependence of resistances have to be taken into account when dynamic or static pressure-flow relations are studied and conceal the effect of a large intramyocardial compliance on arterial hemodynamics.  相似文献   

17.
This study has been designed to investigate the role of phosphatidyl-inositol 3-kinase-γ (PI3Kγ) in deoxycorticosterone acetate salt (DOCA) hypertension induced vascular endothelium dysfunction. Wistar rats were uninephrectomised and DOCA (40 mg·(kg body mass)(-1), subcutaneous injection) was administered twice weekly for 6 weeks to produce hypertension. Rats with mean arterial blood pressure ≥ 140 mm Hg (1 mm Hg = 133.322 Pa) were selected as hypertensive. Vascular endothelium dysfunction was assessed in terms of attenuation of acetylcholine-induced endothelium-dependent relaxation (isolated aortic ring preparation), decrease in serum nitrate and (or) nitrite level, as well as reduced level of glutathione and disruption of integrity of vascular endothelium (histopathology). Five weeks of DOCA administration were followed by 7 days of daily administration of PI3Kγ inhibitor (5-[[5-(4-fluorophenyl)-2-furanyl]methylene]-2,4-thiazolidinedione (CAY10505), 0.6 mg·kg(-1), per os (p.o.)), atorvastatin (30 mg·kg(-1), p.o.), and losartan (25 mg·kg(-1), p.o.) (positive control of hypertension), which significantly improved acetylcholine-induced endothelium dependent relaxation, serum nitrate and (or) nitrite level, glutathione level, and the vascular endothelial lining in hypertensive rats.Therefore, it may be concluded that CAY10505, a specific inhibitor of PI3Kγ, improves hypertension-associated vascular endothelial dysfunction. Thus, inhibition of PI3Kγ might be a useful approach in the therapeutics of vascular endothelium dysfunction.  相似文献   

18.
Maximal vascular leg conductance in trained and untrained men   总被引:4,自引:0,他引:4  
Lower leg blood flow and vascular conductance were studied and related to maximal oxygen uptake in 15 sedentary men (28.5 +/- 1.2 yr, mean +/- SE) and 11 endurance-trained men (30.5 +/- 2.0 yr). Blood flows were obtained at rest and during reactive hyperemia produced by ischemic exercise to fatigue. Vascular conductance was computed from blood flow measured by venous occlusion plethysmography, and mean arterial blood pressure was determined by auscultation of the brachial artery. Resting blood flow and mean arterial pressure were similar in both groups (combined mean, 3.0 ml X min-1 X 100 ml-1 and 88.2 mmHg). After ischemic exercise, blood flows were 29- and 19-fold higher (P less than 0.001) than rest in trained (83.3 +/- 3.8 ml X min-1 X 100 ml-1) and sedentary subjects (61.5 +/- 2.3 ml X min-1 X 100 ml-1), respectively. Blood pressure and heart rate were only slightly elevated in both groups. Maximal vascular conductance was significantly higher (P less than 0.001) in the trained compared with the sedentary subjects. The correlation coefficients for maximal oxygen uptake vs. vascular conductance were 0.81 (trained) and 0.45 (sedentary). These data suggest that physical training increases the capacity for vasodilation in active limbs and also enables the trained individual to utilize a larger fraction of maximal vascular conductance than the sedentary subject.  相似文献   

19.
The effects of intravenous dopamine were evaluated in 10 patients with severe but stable coronary artery disease, 17 consecutive patients with primary cardiogenic shock and 3 with severe congestive heart failure and oliguria. Dopamine infusion at 10 μg/kg·min in the 10 patients increased cardiac output by 35%, left ventricular peak dP/dt by 38%, left ventricular minute work index by 44% and mean systolic ejection rate by 7% (P < 0.01); heart rate, aortic pressure, left ventricular end-diastolic pressure and tension-time index were unchanged. For oxygen, potassium and lactate, arterial and coronary sinus values, coronary arteriovenous oxygen differences and myocardial extraction were unchanged. Hemodynamically 13 of the 17 patients in shock responded favourably to dopamine infusion (0.5 to 15 μg/kg·min), with decrease in heart rate, increase in systolic arterial pressure from 75 to 100 mm Hg (P <0.001), decrease in ventricular filling pressure from 20 to 16 mm Hg (P < 0.01) and increase in urine output from 10 to 100 ml/h (P < 0.01). Eleven of those patients survived the shock episode. A close relation was observed between the hemodynamic response to dopamine, survival from the shock episode and the time between onset of shock and initiation of therapy. Low rates of dopamine infusion induced diuresis in the three patients with severe cardiac failure.Dopamine thus seems to improve the mechanical efficiency of the heart in coronary artery disease. Cardiac output is selectively increased and myocardial ischemia does not appear to be induced; those beneficial effects as well as presumably specific action on renal flow and natriuresis, improve immediate survival from cardiogenic shock and severe heart failure.  相似文献   

20.
To examine the development of pulmonary edema during experimental renal dysfunction, left atrial pressure was altered in 14 mongrel dogs divided into two groups. Group 1 was composed of seven control animals, and Group 2 was composed of seven animals with surgically induced renal failure (1 week of bilateral ureteral ligation). Data were obtained at two levels of matched transmural pulmonary vascular pressure (defined as mean left atrial pressure less serum protein osmotic pressure). In the animals with renal dysfunction, extravascular lung water (EVLW) (thermal-green dye technique) was higher at moderately (-1 to -2 mm Hg) and severely elevated (11 to 12 mm Hg) vascular driving pressures (11.5 +/- 1.2 cc/kg vs 10.6 +/- 0.8 cc/kg and 14.8 +/- 1.3 cc/kg vs 13.0 +/- 1.9 cc/kg, respectively, both P less than 0.05 vs control). Because protein osmotic pressure was lower in the renal failure group (15.0 +/- 1.8 mm Hg vs 18.4 +/- 1.4 mm Hg, P less than 0.05), greater accumulations of extravascular lung water occurred at lower levels of left atrial pressure (14.2 +/- 1.4 mm Hg vs 17.1 +/- 1.2 mm Hg, P less than 0.05; 26.8 +/- 2.6 mm Hg vs 29.5 +/- 2.3 mm Hg, P less than 0.01). In addition, when the ratio of EVLW/PBV (pulmonary blood volume) was examined in both groups at each stage of the experiment, the ratio was greater in the Group 2 animals at each elevated pressure, suggesting increased permeability with renal dysfunction. In conclusion, pulmonary edema formation occurs at lower left atrial pressures in the setting of sustained renal dysfunction, this phenomenon can be partially explained by lower protein osmotic pressure though altered pulmonary microvascular permeability may contribute to edema formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号