首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The antitumor compound cis-[Pt(NH3)2Cl2] (cisplatin), conserves two ammine ligands during the reaction with its cellular target DNA. Modifications of these non-leaving groups change the antineoplastic properties of this compound and its genotoxic effects. It is therefore of interest to determine the influence of non-leaving groups on the structure and stability of DNA in vitro. We have investigated platinum-DNA adducts formed by cis-[Pt(R-NH2)2(NO3)2] (where R-NH2 = NH3, methylamine, cyclobutylamine, cyclopentylamine and cyclohexylamine) as a function of DNA binding. All compounds quantitatively reacted with DNA in less than 1 h at 37 degrees C. They formed bifunctional adducts with adjacent nucleotides judging from the displacement of the intercalating molecule ethidium bromide, ultraviolet absorption spectroscopy and circular dichroism. Substitution of a H on the NH3 ligand by alkyl groups dramatically destabilized the platinum-DNA complex. Thermal stability decreased progressively with an increasing number of carbon atoms, delta tm = -4.4 degrees C for 3 cyclohexylamine-platinum-DNA adducts/1000 nucleotides, conditions where cisplatin had no effect. DNA adducts with cyclobutylamine and cyclohexylamine ligands inhibited the hydrolysis of platinum-DNA complexes by S1 nuclease. Km for the digestion of DNA containing these lesions was 2.3 times greater than for cisplatin, indicating steric inhibition of enzyme-substrate complex formation. These results show that the non-leaving groups of substituted cis-Pt(II) compounds may destabilize DNA and interfere with protein-DNA interactions. These perturbations may have consequences for the genotoxic and antitumor activities of platinum compounds.  相似文献   

2.
Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.  相似文献   

3.
4.
Reaction of cis-diamminedichloroplatinum (II) with single-stranded M13 phage DNA in vitro produced monofunctional platinum-DNA adducts on guanine and bifunctional lesions with either two guanine bases (GG) or one adenine and one guanine (AG). When DNA containing a majority of monofunctional platinum-DNA lesions was dialyzed against 10 mM NaCIO4 at 37 degrees C, conversion of monoadducts to bifunctional lesions was observed. We examined the effect of post-treatment formation of bifunctional lesions on DNA synthesis by Escherichia coli DNA polymerase I and highly purified eukaryotic DNA polymerase alpha from Drosophila melanogaster and calf thymus. Arrest sites on the platinated template were determined by polyacrylamide gel electrophoresis. Monofunctional lesions did not appear to block DNA synthesis. Inhibition of replication increased as bifunctional platinum-DNA lesions formed during post-treatment incubation; GG adducts inhibited replication more than AG. These results suggest that bifunctional GG platinum-DNA adducts may be the major toxic damage of cisplatin.  相似文献   

5.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

6.
DNA adducts of antitumor trans-[PtCl2 (E-imino ether)2].   总被引:1,自引:0,他引:1       下载免费PDF全文
It has been shown recently that some analogues of clinically ineffective trans-diamminedichloroplatinum (II) (transplatin) exhibit antitumor activity. This finding has inverted the empirical structure-antitumor activity relationships delineated for platinum(II) complexes, according to which only the cis geometry of leaving ligands in the bifunctional platinum complexes is therapeutically active. As a result, interactions of trans platinum compounds with DNA, which is the main pharmacological target of platinum anticancer drugs, are of great interest. The present paper describes the DNA binding of antitumor trans-[PtCl(2)(E-imino ether)(2)] complex (trans-EE) in a cell-free medium, which has been investigated using three experimental approaches. They involve thiourea as a probe of monofunctional DNA adducts of platinum (II) complexes with two leaving ligands in the trans configuration, ethidium bromide as a probe for distinguishing between monofunctional and bifunctional DNA adducts of platinum complexes and HPLC analysis of the platinated DNA enzymatically digested to nucleosides. The results show that bifunctional trans-EE preferentially forms monofunctional adducts at guanine residues in double-helical DNA even when DNA is incubated with the platinum complex for a relatively long time (48 h at 37 degrees C in 10 mM NaCIO(4). It implies that antitumor trans-EE modifies DNA in a different way than clinically ineffective transplatin, which forms prevalent amount of bifunctional DNA adducts after 48 h. This result has been interpreted to mean that the major adduct of trans-EE, occurring in DNA even after long reaction times, is a monofunctional adduct in which the reactivity of the second leaving group is markedly reduced. It has been suggested that the different properties of the adducts formed on DNA by transplatin and trans-EE are relevant to their distinct clinical efficacy.  相似文献   

7.
Cisplatin (cis-diamminedichloroplatinum(II] is widely used in the treatment of various human tumours. A large body of experimental evidence indicates that the reaction of cisplatin with DNA is responsible for the cytostatic action of this drug. Several platinum-DNA adducts have been identified and their effect on the conformation of DNA has been investigated. Structural studies of platinum-DNA adducts now permit a reasonably good explanation of the biophysical properties of platinated DNA. Antitumouractive platinum compounds induce in DNA, at low levels of binding, local conformational alterations which have the character of non-denaturing distortions. It is likely that these changes occur in DNA due to the formation of intrastrand cross-links between two adjacent purine residues. On the other hand, the modification of DNA by antitumour-inactive complexes results in the formation of more severe local denaturation changes. Conformational alterations induced in DNA by antitumour-active platinum compounds may be reparable with greater difficulty than those induced by the inactive complexes. Alternatively, non-denaturation change induced in DNA by antitumour platinum drugs could represent more significant steric hindrance against DNA replication as compared with inactive complexes.  相似文献   

8.
A series of site-specifically plantinated, covalently closed circular M13 genomes (7250 bp) was constructed in order to evaluate the consequences of DNA template damage induced by the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP). Here are reported the synthesis and characterization of genomes containing the intrastrand cross-linked adducts cis-[Pt(NH3)2[d(ApG)-N7(1),-N7(2)]], cis-[Pt-(NH3)2[d(GpCpG)-N7(1),-N7(3)]], and trans-[Pt(NH3)2[d(CpGpCpG)-N3(1),-N7(4)]]. These constructs, as well as the previously reported M13 genome containing a site-specifically placed cis-[Pt(NH3)2[d-(GpG)-N7(1),-N7(2)]] adduct, were used to study replication in vitro. DNA synthesis was initiated from a position approximately 177 nucleotides 3' to the individual adducts, and was terminated either by the adducts or by the end of the template, located approximately 25 nucleotides on the 5' side of the adducts. Analysis of the products of these reactions by gel electrophoresis revealed that, on average, bypass of the cis-DDP adducts occurred approximately 10% of the time and that the cis-[Pt(NH3)2[d(GpG)-N7(1),-N7(2)]] intrastrand cross-link is the most inhibitory lesion. The cis-[Pt(NH3)2[(GpCpG)-N7(1),-N7(3)]] adduct allowed a higher frequency of such translesion synthesis (ca. 25%) for two of the polymerases studied, modified bacteriophage T7 polymerase and Escherichia coli DNA polymerase I (Klenow fragment). These enzymes have either low (Klenow) or no (T7) associated 3' to 5' exonuclease activity. Bacteriophage T4 DNA polymerase, which has a very active 3' to 5' exonuclease, was the most strongly inhibited by all three types of cis-DDP adducts, permitting only 2% translesion synthesis. This enzyme is therefore recommended for replication mapping studies to detect the location of cis-DDP-DNA adducts in a heterologous population. The major replicative enzyme of E. coli, the DNA polymerase III holoenzyme, allowed less than 10% adduct bypass. Postreplication restriction enzyme cleavage studies established that the templates upon which translesion synthesis was observed contained platinum adducts, ruling out the possibility that the observed products were due to a small amount of contamination with unplatinated DNA. The effects on in vitro replication of a recently characterized adduct of trans-DDP [Comess, K. M., Costello, C. E., & Lippard, S. J. (1990) Biochemistry 29, 2102-2110] were also evaluated. This adduct provided a poor block both to DNA polymerases and to restriction enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Kinetic studies of the hydrolysis of platinum-DNA complexes by nuclease S1   总被引:1,自引:0,他引:1  
The antitumor agent cis-diamminedichloroplatinum(II) (cis-DDP) reacts covalently with DNA and disrupts its secondary structure. Damaged DNA, but not native DNA, is readily digested by S1 nuclease, an endonuclease specific for single stranded polynucleotides. We have measured S1 nuclease digestion of platinated DNA by the release of platinum-DNA adducts and compared it with digestion of unplatinated DNA. The rate of hydrolysis of damaged substrate from platinum-DNA complexes was less than the overall rate of digestion of nucleotides. Similar results were observed for platinum-DNA complexes in native, denatured or renatured conformations. The hydrolysis of denatured platinum-DNA complexes, rb = 0.075 platinum per nucleotide, obeyed Michaelis-Menten kinetics. Taking into account the level of DNA damage, Vm, for the release of platinated adducts was 0.6 times smaller than for digestion of unplatinated DNA. Km values and competition experiments indicated that the enzyme bound equally well to platinated and unplatinated substrates. Similar results were obtained for denatured DNA complexes with trans-DDP while [PtCl(diethylenetriamine)]Cl had no influence on nuclease digestion. These results suggest that bifunctional platinum-DNA lesions have contradictory effects on the hydrolysis of double stranded DNA by S1 nuclease. On one hand they create nuclease sensitive substrate by disrupting DNA secondary structure. On the other, they inhibit digestion of the damaged strand by increasing the activation energy for hydrolysis.  相似文献   

10.
Replacement of one ammine in clinically ineffective trans-[PtCl2(NH3)2] (transplatin) by a planar N-heterocycle, thiazole, results in significantly enhanced cytotoxicity. Unlike 'classical' cisplatin {cis-[PtCl2(NH3)2]} or transplatin, modification of DNA by this prototypical cytotoxic transplatinum complex trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) leads to monofunctional and bifunctional intra or interstrand adducts in roughly equal proportions. DNA fragments containing site-specific bifunctional DNA adducts of trans-PtTz were prepared. The structural distortions induced in DNA by these adducts and their consequences for high-mobility group protein recognition, DNA polymerization and nucleotide excision repair were assessed in cell-free media by biochemical methods. Whereas monofunctional adducts of trans-PtTz behave similar to the major intrastrand adduct of cisplatin [J. Kasparkova, O. Novakova, N. Farrell and V. Brabec (2003) Biochemistry, 42, 792-800], bifunctional cross-links behave distinctly differently. The results suggest that the multiple DNA lesions available to trans-planaramine complexes may all contribute substantially to their cytotoxicity so that the overall drug cytotoxicity could be the sum of the contributions of each of these adducts. However, acquisition of drug resistance could be a relatively rare event, since it would have to entail resistance to or tolerance of multiple, structurally dissimilar DNA lesions.  相似文献   

11.
The results presented describe the effects of various spectator ligands, attached to a platinum 1,2-intrastand d(GpG) cross-link in duplex DNA, on the binding of high mobility group box (HMGB) domains and the TATA-binding protein (TBP). In addition to cisplatin-modified DNA, 15-base pair DNA probes modified by [Pt(1R,2R-diaminocyclohexane)](2+), cis-[Pt(NH(3))(cyclohexylamine)](2+), [Pt(ethylenediamine)](2+), cis-[Pt(NH(3))(cyclobutylamine)](2+), and cis-[Pt(NH(3))(2-picoline)](2+) were examined. Electrophoretic mobility shift assays show that both the A and B domains of HMGB1 as well as TBP discriminate between different platinum-DNA adducts. HMGB1 domain A is the most sensitive to the nature of the spectator ligands on platinum. The effect of the spectator ligands on protein binding also depends highly on the base pairs flanking the platinated d(GpG) site. Double-stranded oligonucleotides containing the AG*G*C sequence, where the asterisks denote the sites of platination, with different spectator ligands are only moderately discriminated by the HMGB proteins and TBP, but the recognition of dsTG*G*A is highly dependent on the ligands. The effects of HMGB1 overexpression in a BG-1 ovarian cancer cell line, induced by steroid hormones, on the sensitivity of cells treated with [Pt(1R,2R-diaminocyclohexane)Cl(2)] and cis-[Pt(NH(3))(cyclohexylamine)Cl(2)] were also examined. The results suggest that HMGB1 protein levels influence the cellular processing of cis-[Pt(NH(3))- (cyclohexylamine)](2+), but not [Pt((1R,2R)-diaminocyclohexane)](2+), DNA lesions. This result is consistent with the observed binding of HMGB1a to platinum-modified dsTG*G*A probes but not with the binding affinity of HMGB1a and HMGB1 to platinum-damaged dsAG*G*C oligonucleotides. These experiments reinforce the importance of sequence context in platinum-DNA lesion recognition by cellular proteins.  相似文献   

12.
The structure-pharmacological activity relationships generally accepted for antitumor platinum compounds stressed the necessity for the cis-[PtX(2)(amine)(2)] structure while the trans-[PtX(2)(amine)(2)] structure was considered inactive. However, more recently, several trans-platinum complexes have been identified which are potently toxic, antitumor-active and demonstrate activity distinct from that of conventional cisplatin (cis-[PtCl(2)(NH(3))(2)]). We have shown in the previous report that the replacement of ammine ligands by iminoether in transplatin (trans-[PtCl(2)(NH(3))(2)]) results in a marked enhancement of its cytotoxicity so that it is more cytotoxic than its cis congener and exhibits significant antitumor activity, including activity in cisplatin-resistant tumor cells. In addition, we have also shown previously that this new trans compound (trans-[PtCl(2)(E-iminoether)(2)]) forms mainly monofunctional adducts at guanine residues on DNA, which is generally accepted to be the cellular target of platinum drugs. In order to shed light on the mechanism underlying the antitumor activity of trans-[PtCl(2)(E-iminoether)(2)] we examined oligodeoxyribonucleotide duplexes containing a single, site-specific, monofunctional adduct of this transplatin analog by the methods of molecular biophysics. The results indicate that major monofunctional adducts of trans-[PtCl(2)(E-iminoether)(2)] locally distort DNA, bend the DNA axis by 21 degrees toward the minor groove, are not recognized by HMGB1 proteins and are readily removed from DNA by nucleotide excision repair (NER). In addition, the monofunctional adducts of trans-[PtCl(2)(E-iminoether)(2)] readily cross-link proteins, which markedly enhances the efficiency of this adduct to terminate DNA polymerization by DNA polymerases in vitro and to inhibit removal of this adduct from DNA by NER. It is suggested that DNA-protein ternary cross-links produced by trans-[PtCl(2)(E-iminoether)(2)] could persist considerably longer than the non-cross-linked monofunctional adducts, which would potentiate toxicity of this antitumor platinum compound toward tumor cells sensitive to this drug. Thus, trans-[PtCl(2)(E-iminoether)(2)] represents a quite new class of platinum antitumor drugs in which activation of trans geometry is associated with an increased efficiency to form DNA-protein ternary cross-links thereby acting by a different mechanism from 'classical' cisplatin and its analogs.  相似文献   

13.
DNA–protein cross-links are formed by various DNA-damaging agents including antitumor platinum drugs. The natures of these ternary DNA–Pt–protein complexes (DPCLs) can be inferred, yet much remains to be learned about their structures and mechanisms of formation. We investigated the origin of these DPCLs and their cellular processing on molecular level using gel electrophoresis shift assay. We show that in cell-free media cisplatin [cis-diamminedichloridoplatinum(II)] forms DPCLs more effectively than ineffective transplatin [trans-diamminedichloridoplatinum(II)]. Mechanisms of transformation of individual types of plain DNA adducts of the platinum complexes into the DPCLs in the presence of several DNA-binding proteins have been also investigated. The DPCLs are formed by the transformation of DNA monofunctional and intrastrand cross-links of cisplatin. In contrast, interstrand cross-links of cisplatin and monofunctional adducts of transplatin are stable in presence of the proteins. The DPCLs formed by cisplatin inhibit DNA polymerization or removal of these ternary lesions from DNA by nucleotide excision repair system more effectively than plain DNA intrastrand or monofunctional adducts. Thus, the bulky DNA–protein cross-links formed by cisplatin represent a more distinct and persisting structural motif recognized by the components of downstream cellular systems processing DNA damage considerably differently than the plain DNA adducts of this metallodrug.  相似文献   

14.
In the reaction of the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, bifunctional intrastrand and interstrand cross-links are formed. In this work, we show that at 37 degrees C interstrand cross-links (ICL) are labile and rearrange into intrastrand cross-links. The ICL instability was first studied with a 10 base pairs (bp) double-stranded oligonucleotide containing a unique site-specific ICL resulting from chelation of the N7 position of two guanine residues on the opposite strands of DNA at the d(GC/GC) site by a cis-diammineplatinum(II) residue. The bonds between the platinum and the N7 of guanine residues within the interstrand adduct are cleaved. In 50 mM NaCl or NaClO4, this cleavage results in the formation of monofunctional adducts which subsequently form intrastrand cross-links. One cleavage reaction takes place per cross-linked duplex in either of both DNA strands. Whereas the starting cross-linked 10 bp duplex is hydrogen bonded, the two complementary DNA strands separate after the cleavage of the ICL. Under these conditions, the cleavage reaction is irreversible allowing its rate measurement (t1/2= 29+/-2 h) and closure of monofunctional adducts to intrastrand cross-links occurs within single-stranded DNA. Within a longer cross-linked oligonucleotide (20 bp), ICL are apparently more stable (t1/2= 120+/-12 h) as a consequense of monofunctional adducts closure back to ICL. We propose that the ICL cleavage is reversible in DNA and that these adducts rearrange finally into intrastrand cross-links. Our results could explain an 'ICL unhooking' in previously reported in vivo repair studies [Zhenet al. (1993)Carcinogenesis14, 919-924].  相似文献   

15.
E Holler  R Bauer    F Bernges 《Nucleic acids research》1992,20(9):2307-2312
The question of whether monofunctional DNA platinum(II) adducts block synthesis of DNA by purified DNA polymerases of different types and origin has been investigated by comparing the time dependence of synthesis arrest and of DNA adduct formation. Activated salmon testis DNA is used as a suitable substrate for DNA synthesis allowing to probe inhibition by platinum(II) monoadducts for the variety of inherent template-primers. Reaction amplitudes are related to defined mixtures of dichloro and chloroaqua platinum(II) complexes. It is found that (i) all investigated DNA polymerases seem arrested (100% efficiency) at bifunctional DNA adducts. (ii) human DNA polymerase beta bypasses most of the monofunctional lesions of the three platinum(II) complexes investigated. (iii) Klenow fragment is blocked by monoadducts with increasing efficiency in the order cis-diamminechloroaquaplatinum(II) (0%) less than meso-[1,2-bis(2,6- dichloro-4-hydroxyphenyl)ethylenediamine] chloroaquaplatinum(II) (50%) less than trans-diamminechloro-aquaplatinum(II) (75%). (iv) Escherichia coli DNA polymerase I, Thermus aquaticus DNA polymerase, Physarum polycephalum DNA polymerase alpha, and calf thymus DNA polymerase alpha appear to be arrested by monoadducts. According to these examples, blocking efficiencies depend on the cis/trans-stereogeometry of fixation of the carrier ligands at platinum(II) residues, on the size/chemical nature of the platin(II) carrier ligand and on the type/origin of DNA polymerase.  相似文献   

16.
[3H]dGMP-3'-labelled, activated salmon testis DNA and [32P]dGMP-5'-labelled open circular M13 DNA were reacted with cis-diamminedichloroplatinum(II), cis-diamminechloroaquaplatinum(II), cis-diamminediaquaplatinum(II) or trans-diamminechloroaquaplatinum(II). The reaction was arrested after arbitrary times by adjustment to slightly alkaline solution conditions. The platinum-containing DNA was digested with Escherichia coli DNA polymerase I. The progress of nucleotide release was measured by acid precipitation of undigested DNA. Solubilized nucleotides and adducts were analyzed by HPLC. The 3'-5'-exonuclease activity liberated single-coordinated dGMP-platinum(II) adducts from both cis- and trans-platinum(II) treated salmon testis DNA and a small fraction of adducts of cis-platinum(II) that coordinated two molecules of dGMP. The bisadduct was derived from non-neighboring guanine residues probably located at or close to 3'-termini. This nuclease activity neither cut between nor after neighboring guanine residues crosslinked by cis-platinum(II). No bisadduct was liberated for trans-platinum(II). The 5'-3'-exonuclease activity did not liberate any nucleotide adducts from cis-platinum(II)-treated DNa. However, it removed single-coordinated guanine adducts of trans-diamminedichloroplatinum(II). From the kinetics of the appearance of dGMP monoadducts and the inhibition of digestion, a reaction scheme is formulated for the reaction of platinum(II) complexes with DNA that confirms and extends the previously published one [W. Schaller, H. Reisner & E. Holler (1987) Biochemistry 26, 943-950]. The longevity of the dGMP monoadduct intermediate is discussed in the context of the efficiency of cis-diamminedichloroplatinum(II) as an antitumor drug.  相似文献   

17.
The genotoxic effects of six cis-platinum(II)chloramine complexes with different alkyl substituents on their amine ligands have been measured using Escherichia coli. The toxicity and mutagenicity of these compounds were compared, after exposure of bacteria, to drug concentrations which gave known quantities of platinum-DNA lesions. The results permit several observations concerning structure-activity relations of platinum(II) complexes. Firstly, methyl substitution on the amine ligands of cis-diamminedichloro-platinum(II) (DDP) is reported to reduce its antitumor activity. The methyl group did not exert an effect in bacteria where the toxicity and mutagenicity of cis-bis(methylamine)dichloroplatinum(II) and DDP were equivalent. In fact, at equal levels of DNA binding, complexes with substituted amines were generally more toxic toward bacteria than DDP. Secondly, replacement of the chloro groups of DDP by nitrato ligands increased its toxicity and mutagenicity at a given level of DNA binding. Hence, although DDP and its dinitrato derivative have identical ammine ligands, they may form different platinum-DNA lesions in bacteria. Finally, cis-bis(cyclohexylamine)-dichloroplatinum(II) was unique among the compounds studied since it did not cause bacterial filamentation or mutagenesis. These results suggest that, although this compound binds to the bacterial genome, it may not induce the SOS response.  相似文献   

18.
After exposure of bacteria to equal concentrations of cis-diamminedichloroplatinum(II) (DDP) and cis-diamminetetrachloroplatinum(IV) (DTP), the intracellular concentration of DTP was an order of magnitude greater than DDP. However, at identical intracellular drug concentrations, the Pt(IV) compound formed only half as many platinum-DNA lesions. For equal numbers of DNA lesions, the toxicity of both agents was identical whereas the mutagenicity of DTP was 7 times less than for DDP and its capacity to induce recA protein was less than DDP by a factor of 3.5. Bioreduction of Pt(IV) compounds to their corresponding Pt(II) analogues has been proposed as a mechanism for the reaction of Pt(IV) compounds with cellular DNA. According to this hypothesis, DTP would be reduced to DDP in the cell prior to its reaction with DNA and the platinum-DNA lesions of the two compounds should be identical. Our results suggest that reductive elimination can not entirely account for DNA damage caused by PT(IV) compounds in bacteria.  相似文献   

19.
Differences in the mode of binding of cis- and trans-diamminedichloroplatinum(II) complexes (cis and trans-DDP) with DNA and chromatin were studied with the use of [14C]methylbromphenvinphos as an alkylating agent which attacks the sites in purines bases involved also in the reaction with cis-DDP (Oliński et al., J. Biochem. Biophys. Meth., 7, 171-173, 1983). Methylation of pre-formed DDP-DNA and DDP-chromatin complexes, followed by qualitative and quantitative analysis of the methylation products in DNA hydrolysates, permitted evaluation of the distribution and extent of platination of the bases. No major differences were found between the action of the two DDP isomers on DNA. However, a significant decrease in binding of trans-DDP to adenine moieties was observed when the interaction of cis- and trans-DDP on chromatin was compared.  相似文献   

20.
D Payet  F Gaucheron  M Sip    M Leng 《Nucleic acids research》1993,21(25):5846-5851
Single- and double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adduct have been studied at two NaCl concentrations. In 50 mM and 1 M NaCl, the adducts within the single-stranded oligonucleotides are stable. In contrast, they are unstable within the corresponding double-stranded oligonucleotides. In 50 mM NaCl, the bonds between platinum and guanine or N-methyl-2,7-diazapyrenium residues are cleaved and subsequently, intra- or interstrand cross-links are formed as in the reaction between DNA and cis-DDP. In 1 M NaCl, the main reaction is the replacement of N-methyl-2,7-diazapyrenium residues by chloride which generates double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)Cl]+ adduct. The rates of closure of these monofunctional adducts to bifunctional cross-links have been studied in 60 mM NaClO4. Within d(TG.CT/AGCA), d(CG.CT/AGCG) and d(AG.CT/AGCT) (the symbol.indicates the location of the adducts in the central sequences of oligonucleotides), the half-lifes (t1/2) of the cis-[Pt(NH3)2(dG)Cl]+ adducts are respectively 12, 6 and 2.8 hr and the cross-linking reactions occur between guanine residues on the opposite strands. Within d(AG.TC/GACT), d(CG.AT/ATCG) and d(TGTG./CACA) or d(TG.TG/CACA) t1/2 are respectively 1.6, 8 and larger than 20 hr and the intrastrand cross-links are formed at the d(AG), d(GA) and d(GTG) sites, respectively. The conclusion is that the rates of conversion of cis-platinum-DNA monofunctional adducts to minor bifunctional cross-links are dependent on base sequence. The potential use of the instability of cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adducts is discussed in the context of the antisense strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号