首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lamellar body fraction was isolated from rat alveolar granular pneumocytes in primary culture by upward flotation on a discontinuous sucrose gradient and compared with a similar fraction isolated from lung homogenates. Lamellar bodies from granular pneumocytes were free of detectable contamination with either succinate dehydrogenase or NADPH-cytochrome c reductase. There was an enrichment of acid phosphatase activity, which, based on distribution of enzyme activity on the gradient, did not appear to be a contamination from other fractions. The lamellar body fraction of granular pneumocytes yielded approx. 1 microgram protein/10(6) cells with a phospholipid-to-protein ratio (mg/mg) of 9.6 +/- 0.4 (n = 7). Composition with respect to total phospholipids was 71.0% phosphatidylcholine (disaturated phosphatidylcholine, 45.2%), 8.4% phosphatidylglycerol and 12.8% phosphatidylethanolamine. Palmitic acid comprised 66% of the fatty acids in phosphatidylcholine and 34% of those in phosphatidylglycerol. The lamellar body fraction from granular pneumocytes was similar to that from whole lung with respect to phospholipid-to-protein ratio and phospholipid composition and showed only minor differences in fatty acid composition. Ultrastructurally, lamellar bodies showed generally intact limiting membranes and lamellated structure. Lamellar bodies from granular pneumocytes showed occasional multinucleated whorls which were not seen in those isolated from lung homogenates. This study describes a method for preparing a homogeneous fraction of intact lamellar bodies from small amounts of material (6 X 10(7) granular pneumocytes). The yield on a per cell basis was higher when compared with a similar preparation from whole lung, although overall yield is small, due to loss of cells during the cell isolation procedure. This preparation may be useful to evaluate the role of lamellar bodies in the synthesis and secretion of lung surfactant by isolated granular pneumocytes.  相似文献   

2.
Previous studies with the isolated perfused rat lung showed that both clathrin- and actin-mediated pathways are responsible for endocytosis of dipalmitoylphosphatidylcholine (DPPC)-labeled liposomes by granular pneumocytes in the intact lung. Using surfactant protein-A (SP-A) gene-targeted mice, we examined the uptake of [(3)H]DPPC liposomes by isolated mouse lungs under basal and secretagogue-stimulated conditions. Unilamellar liposomes composed of [(3)H]DPPC: phosphatidylcholine:cholesterol:egg phosphatidylglycerol (10:5:3:2 mol fraction) were instilled into the trachea of anesthetized mice, and the lungs were perfused (2 h). Uptake was calculated as percentage of instilled disintegrations per minute in the postlavaged lung. Amantadine, an inhibitor of clathrin and, thus, receptor-mediated endocytosis via clathrin-coated pits, decreased basal [(3)H]DPPC uptake by 70% in SP-A +/+ but only by 20% in SP-A -/- lung, data compatible with an SP-A/receptor-regulated lipid clearance pathway in the SP-A +/+ mice. The nonclathrin, actin-dependent process was low in the SP-A +/+ lung but accounted for 55% of liposome endocytosis in the SP-A -/- mouse. With secretagogue (8-bromoadenosine 3',5'-cyclic monophosphate) treatment, both clathrin- and actin-dependent lipid clearance were elevated in the SP-A +/+ lungs while neither pathway responded in the SP-A -/- lungs. Binding of iodinated SP-A to type II cells isolated from both genotypes of mice was similar indicating a normal SP-A receptor status in the SP-A -/- lung. Inclusion of SP-A with instilled liposomes served to "rescue" the SP-A -/- lungs by reestablishing secretagogue-dependent enhancement of liposome uptake. These data are compatible with a major role for receptor-mediated endocytosis of DPPC by granular pneumocytes, a process critically dependent on SP-A.  相似文献   

3.
Influence of cycloheximide on the lung.   总被引:1,自引:0,他引:1  
We examined the time course of the influence of cycloheximide on descending pressure-volume curves of excised lungs and on protein and lecithin synthesis and oxygen consumption by lung slices. We also looked at the influence of cycloheximide on granular pneumocyte ultrastructure. Excised lungs from cycloheximide-treated animals are more compliant than controls. After ventilation with air, lungs from control and cycloheximide animals show increased retractive forces and a shift to the right of the deflation P-V curve. Incubation at 38 degrees C for 30 min reverses these changes in control lungs, but not in lungs from cycloheximide-treated rabbits. There is no change in liquid delfation P-V curves after cycloheximide. Cycloheximide causes an immediate decrease of 50% in incorporation of radioactive leucine into protein by lung slices. Incorporation of radioactive palmitate into lecithin and oxygen consumption are also decreased by 50% 6 h after cycloheximide. Lamellar bodies in granular pneumocytes are smaller after cycloheximide. Cycloheximide causes a significant increase in the surface density of the lamellar body envelope. Cytoplasmic area of granular pneumocytes is increased after cycloheximide.  相似文献   

4.
Glycerol kinase activity and glycerol utilization by rat granular pneumocytes were determined in order to investigate the rate-limiting step for glycerol incorporation into lung lipids. Granular pneumocytes were isolated in primary culture following trypsinization of rat lungs. Glycerol kinase activity was 8.2 nmol/h per 10(6) cells. Incorporation of [1,3-14C]glycerol into total cell lipids was 0.29 nmol/h per 10(6) cells. In the presence of saturating glycerol concentration, production of 3H2O from [2-3H]glycerol was 13 times greater than incorporation of [14C]glycerol into lipids. Glycerol phosphate dehydrogenase activity in isolated cells was approximately 10 times glycerol kinase activity. In the presence of 5.6 mM glucose, glycerol incorporation into lipids was decreased 79% and detritiation of glycerol was decreased 34%. This effect of glucose was due to a 25% increase in cell glycerol 3-phosphate content, resulting in dilution of the precursor pool and possible inhibition of glycerol phosphorylation. These results indicate that the relatively limited incorporation of glycerol into surfactant phospholipids by lung epithelial cells reflects the relatively high rate of glycerol 3-phosphate oxidation.  相似文献   

5.
The composition and synthesis of alveolar and lung tissue phospholipids were investigated in normal and oxygen-poisoned rat lungs. Sixty-hour exposure to oxygen increased the total amount of phospholipids in the endobronchial extracts and lung tissue. Phosphatidyl glycerol was identified in both endobronchial extracts and lung tissue. The amount of unsaturated fatty acids in surfactant lecithin and phosphatidyl glycerol was slightly increased in oxygen-poisoned lungs whereas the composition of phospholipids in the endobronchial extracts was not affected by oxygen. After intraperitoneal administration of [32P]phosphate the specific activities of surfactant lecithin and phosphatidyl glycerol were clearly lower in oxygen-treated animals whereas the specific activities of lung tissue lecithin and phosphatidyl glycerol remained unaffected. The synthesis of lecithin from [14C]methionine through N-methyltransferase pathway was markedly depressed in lung slices but increased in liver tissue taken from oxygen-poisoned rats and incubated under oxygen indicating a difference between lung and liver methyltransferase enzymes. In conclusion, the present work suggests impaired synthesis and removal of alveolar phospholipids in oxygen-poisoned rats.  相似文献   

6.
Whereas glucose is a major substrate for pulmonary lipid synthesis, fructose has also been suggested as a potential substrate. In vivo pulmonary fatty acid synthesis is depressed in hormonally deprived conditions, such as diabetes, and this can be modified by fructose feeding, but not by glucose feeding. In this study the glucose and fructose utilizations were compared in normal, diabetic and fasting states using isolated perfused rat lungs. When (U-14C)- or (5-3H)-glucose was used as substrate, glucose utilization by lung was reduced by 50% in both the fasting and diabetic animals compared to the normal controls. Using (U-14C)-glucose as substrate, the incorporation of (14C)-label in various metabolites of glucose was significantly depressed. For example, this reduction was 50% in lactate, pyruvate and CO2, 15% in ethanol-insoluble fraction, 65% in neutral lipids, 75% in phospholipids, 80% in fatty acid moiety, 40% in deacylated fraction and 10% in the polysaccharide fractions. Refeeding the fasted animals or insulin treatment to the diabetic animals restored these depressed (14C)-recoveries to the normal levels. Fructose utilization was less than 10% of glucose utilization, but remained unaffected by fasting and diabetic states. In addition, pulmonary hexokinase enzyme activity was lowered significantly in fasting and diabetic animals, whereas fructokinase enzyme activity was not altered. Despite the low rate of fructose utilization, these results suggest that fructose may serve as an alternative substrate for pulmonary phospholipid synthesis when glucose utilization is significantly depressed.  相似文献   

7.
Uptake and degradation of (125)I-surfactant protein A (SP-A) over a 1-h period was studied in alveolar cells in culture and in isolated perfused lungs to elucidate the mechanism for clearance of the protein from the alveolar space. Specific inhibitors of clathrin- and actin-dependent endocytosis were utilized. In type II cells, uptake of SP-A, compared with controls, was decreased by 60% on incubation with clathrin inhibitors (amantadine and phenylarsine oxide) or with the actin inhibitor cytochalasin D. All agents reduced SP-A metabolism by alveolar macrophages. Untreated rat isolated perfused lungs internalized 36% of instilled SP-A, and 56% of the incorporated SP-A was degraded. Inhibitors of clathrin and actin significantly reduced SP-A uptake by approximately 54%, whereas cytochalasin D inhibited SP-A degradation. Coincubation of agents did not produce an additive effect on uptake of SP-A by cultured pneumocytes or isolated perfused lungs, indicating that all agents affected the same pathway. Thus SP-A clears the lung via a clathrin-mediated pathway that requires the polymerization of actin.  相似文献   

8.
The relative utilization of [U-14C]glucose and [1-14C]palmitate was examined in lung slices of male Long Evans hooded rats fed ad libitum and starved for 72 h. Food deprivation (72-h fast) significantly decreased [U-14C]flucose oxidation and incorporation into lung lipids. Glucose incorporation into phospholipid-fatty acid (53%) was, in proportion, more markedly reduced than into phospholipid-gluceride glycerol (33%), suggesting that glucose was being conserved for the formation of alpha-glycerol phosphate. (1-14C) palmitate utilization following fasting showed a significant 40% increase in oxidation, and a significant 16% increase in phospholipids, indicating preferential utilization of fatty acids over glucose. Phospholipid fatty acid composition, surface tension measurements and volume-pressure curves were not affected by fasting. Khe data indicate that glucose and palmitate metabolism are interrelated, and that the relative utilization of these substrates is changed to maintain essential lung lipids during an altered physiologic state.  相似文献   

9.
Membrane inlet (or introduction) mass spectrometry (MIMS) was used to detect nitroxyl (HNO) in aqueous solution for the first time. The common HNO donors Angeli's salt (AS) and Piloty's acid (PA), along with a newly developed donor, 2-bromo-N-hydroxybenzenesulfonamide (2-bromo-Piloty's acid, 2BrPA), were examined by this technique. MIMS experiments revealed that under physiological conditions 2BrPA is an essentially pure HNO donor, but AS produces a small amount of nitric oxide (NO). In addition, MIMS experiments also confirmed that PA is susceptible to oxidation and NO production, but that 2BrPA is not as prone to oxidation.  相似文献   

10.
E Gaton  M Wolman 《Histochemistry》1979,63(2):203-207
Male rats were fed a diet containing chlorocyclizine in high concentrations for about 3 weeks. They lost weight and showed respiratory distress. The lungs contained clusters of foam cells in the alveoli. Acid esterase staining revealed reduction of activity in alveolar cells presumed to be granular pneumocytes and absence of activity in the foam cells. The lipid showed in the foam cells could not be stained with Sudan dyes, except at high temperature, and was not stained by phospholipid and cholesterol procedures. This indicated that the stored lipids are probably solid at room temperature, consisting of saturated triglycerides and/or phospholipids. It is suggested that the lipid originated in the granular pneumocytes. The drug might have deranged the esterase-phospholipase activity in these cells and in the macrophages.  相似文献   

11.
The purpose of this study was to determine whether lipoprotein-bound free fatty acid could be utilized by isolated mammalian cells. Ehrlich ascites tumor cells were incubated in vitro with radioactive free fatty acids that were bound to human plasma lipoproteins. Under these conditions, lipoprotein-bound free fatty acids were readily taken up by the cells. After 2 min of incubation with free fatty acids bound to low density lipoproteins, most of the radioactivity that was associated with the cells was in the form of free fatty acids. As the incubation continued, increasing amounts of radioactivity were incorporated into CO(2) and cell lipids, particularly phospholipids. Most of the free fatty acid uptake was the result of fatty acid transfer from low density lipoproteins to the cell, not from irreversible incorporation of the intact free fatty acid-low density lipoprotein complex. Fatty acid uptake increased as the ratio of free fatty acid to low density lipoprotein was raised. When albumin was added to the medium, free fatty acid uptake decreased. A large percentage of the newly incorporated cellular radioactivity was released into the medium if the cells were exposed subsequently to a solution containing albumin. Most of the released radioactivity was in the form of free fatty acid. The results with this experimental model suggest that lipoprotein-bound free fatty acid, like albumin-bound free fatty acid, is readily available for uptake by isolated cells. The mechanism of free fatty acid utilization by the Ehrlich cell is similar when either low density lipoprotein or serum albumin serves as the fatty acid carrier.  相似文献   

12.
A possible role for an acidic subcellular compartment in biosynthesis of lung surfactant phospholipids was evaluated with granular pneumocytes in primary culture. Incubation with chloroquine (100μm) was used to perturb this compartment. With control cells, incorporation of [9,10-3H]palmitic acid into total lipids and into total phosphatidylcholines increased linearly with time up to 4h. Total incorporation into phosphatidylcholine during a 1h incubation was 999+85pmol of [9,10-3H]palmitic acid, 458±18pmol of [1-14C]oleic acid and 252±15pmol of [U-14C]glucose per μg of phosphatidylcholine phosphorus. The cellular content of either disaturated phosphatidylcholine or total phosphatidylcholines did not change during a 2h incubation with chloroquine. In the presence of chloroquine, the specific radioactivity of [3H]palmitic acid in disaturated phosphatidylcholine increased by 40%, and that of disaturated-phosphatidylcholine fatty acids from [U-14C]glucose increased by 125%. Incorporation of [1-14C]oleic acid into phosphatidylcholine was decreased by chloroquine by 79% and 33% in the presence or absence of palmitic acid respectively. Chloroquine stimulated phospholipase activity in intact cells, and in sonicated cells at pH4.0, but not at pH8.5. The observations indicate that chloroquine stimulates synthesis of disaturated phosphatidylcholine in granular pneumocytes from fatty acids, both exogenous and synthesized de novo, which can be due to stimulation of acidic phospholipase. This stimulation of acidic phospholipase A activity by chloroquine appears to be coupled to the synthesis of disaturated phosphatidylcholine, thereby enhancing remodelling of phosphatidylcholine synthesized de novo. Our findings, therefore, implicate the involvement of an acidic subcellular compartment in the remodelling pathway of disaturated phosphatidylcholine synthesis by granular pneumocytes.  相似文献   

13.
Summary Male rats were fed a diet containing chlorocyclizine in high concentrations for about 3 weeks. They lost weight and showed respiratory distress. The lungs contained clusters of foam cells in the alveoli. Acid esterase staining revealed reduction of activity in alveolar cells presumed to be granular pneumocytes and absence of activity in the foam cells. The lipid showed in the foam cells could not be stained with Sudan dyes, except at high temperature, and was not stained by phospholipid and cholesterol procedures. This indicated that the stored lipids are probably solid at room temperature, consisting of saturated triglycerides and/or phospholipids. It is suggested that the lipid originated in the granular pneumocytes. The drug might have deranged the esterase-phospholipase activity in these cells and in the macrophages.With technical assistance of Nitza Deitsch  相似文献   

14.
15.
16.
We examined oxygen consumption by lung slices and measured the volume density of mitochondria of granular pneumocytes, alveolar type I cells, and alveolar capillary endothelial cells in several species. We found that lung oxygen consumption (mu-1 02 times h-1 times mg DNA-1) varies inversely with the log of animal body weight and with the species alveolar diameter and directly with the species respiratory rate. The volume density of granular pneumocyte mitochondria show a direct linear correlation with the lung's oxygen consumption and the species respiratory rate, and an inverse linear correlation with the species alveolar diameter. The volume density of mitochondria in type I alveolar epithelial cells and capillary endothelial cells, considered together, did not differ in the two species studied (mouse and rat). We conclude that there are interspecies differences in oxygen consumption by lung cells and that granular pneumocytes contribute to these differences. We suggest that, at least part of these differences, are related to interspecies differences in surfactant secretory activity.  相似文献   

17.
1. The utilization of [1,5-(14)C(2)]citrate by lung slices and cell cytosol preparations, and the activities of liver and lung cytosol citrate-cleavage enzyme (EC 4.1.3.8), l-malate-NAD oxidoreductase (malate dehydrogenase, EC 1.1.1.37) and phosphoenolpyruvate carboxylase (EC 4.1.1.32) were examined in normal and starved rats. 2. Lipogenesis from citrate was decreased by approx. 70% in both the phospholipid and neutral lipid fractions of lung slices from starved rats as compared with fed controls. 3. Incorporation of citrate by lung cytosol preparations into fatty acids was decreased by approx. 35% in the starved rats. The apparent inhibition by avidin of fatty acid synthesis was overcome partially by preincubation of lung cytosol preparations with biotin. These results are consistent with the presence in lung tissue of the malonyl-CoA pathway for fatty acid synthesis. 4. Lung citrate-cleavage enzyme activity decreased in rats that had been starved for 72h whereas malate dehydrogenase and phosphoenolpyruvate carboxylase activities remained unchanged. The results suggest that the pattern of utilization of lipid precursors by rat lung may be altered during various nutritional states.  相似文献   

18.
We have shown previously that phospholipids instilled through the trachea are removed from the air spaces in isolated rat lungs by a process that is stimulated by beta-adrenergic agonists. In this study, we evaluated the fate of radiolabeled lipid vesicles [50% [3H]dipalmitoyl phosphatidylcholine (DPPC), 25% phosphatidylcholine (PC), 15% cholesterol, and 10% phosphatidylglycerol (PG)]. Vesicles were instilled through the trachea of anesthetized rats, and the lungs removed for perfusion. The percent of instilled 3H that could not be removed from lungs by extensive lung lavage increased progressively; at 3 h this fraction was 25.8 +/- 0.63% (mean +/- SE; n = 8). The percent of dpm in the lung homogenate accounted for by PC decreased progressively while dpm in lyso-PC, unsaturated PC, and aqueous soluble metabolites [choline, choline phosphate, glycerophosphorycholine, and cytidine 5'-diphosphate (CDP) choline (CDP-choline) increased. The dpm in microsomal and lamellar body fractions isolated from lung homogenates also increased progressively with time of perfusion. The presence of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) significantly stimulated both uptake of DPPC and the appearance of radioactivity in metabolites and subcellular organelles. This effect of 8-BrcAMP was not due to stimulation of phospholipase A activity. These results indicate that exogenous phospholipids instilled into the air spaces of rat lungs are internalized and degraded by a process that is stimulated by cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
The uptake by liver slices of radioactive acetate, palmitate, stearate, linoleate and glycerol into glycerolipids was compared in fed and fasted (overnight, 16 hr) rats.

The incorporation of l-14C-acetate into long-chain fatty acids and glycerolipids was depressed by fasting. There was a considerable decrease in the incorporation of 1-14C-palmitate into triglyceride (TG) and that of l-14C-stearate into phosphatidylcholine (PC) in fasted liver slices. No such differences were observed with l-14C-linoleate. The incorporation of l-14C-glycerol into TG was slightly decreased, whereas that into PC and phosphatidylethanolamine (PE) was increased by fasting.

These observations, together with those with the incorporation of the precursors into molecular species of TG, PC and PE, suggested that the changes in the fatty acid composition of glycerolipids by fasting may be governed by the changes in the availability of acyl moieties as well as in the relative balance of the pathways participating to formation of TG and phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号