首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desensitization, as represented by the progressive decline in the electromotive effects of depolarizing agents at the neuromuscular junction, was studied by observing the time course of changes in effective transmembrane resistance during the prolonged application of 0.27 mM carbamylcholine to the postjunctional region of frog skeletal muscle fibers. The effective transmembrane resistance was measured by means of two intracellular microelectrodes implanted in the junctional region of single muscle fibers. When carbamylcholine was applied to the muscle there was an immediate decrease in the effective membrane resistance followed by a slower return toward control values which was identified as the phase of desensitization. When the calcium concentration was increased from 0 to 10 mM there was an approximately sevenfold increase in the rate of desensitization. On the other hand, an increase in the concentration of sodium from 28 to 120 mM caused a slowing of the rate of desensitization. Even in muscles depolarized by potassium sulfate, calcium increased the rate of desensitization while high concentrations of potassium tended to prolong the process. Some mechanisms by which calcium might exert these effects are discussed.  相似文献   

2.
The interaction between caffeine and calcium on the rate of desensitization of muscle postjunctional membrane (PJM) receptors during the sustained application of 0.27 mM carbamylcholine (CARB) has been studied in vitro on the sartorius muscle of the frog. The rate of PJM repolarization with CARB added to the solution bathing the muscle or the recovery of the effective transmembrane resistance (EMR) during the microperfusion of CARB directly onto the end-plate region of individual fibers was used as an index of the rate of desensitization. Caffeine (1.5 mM) increased the rate of PJM repolarization with bulk application of CARB in a 1.8 or 10 mM calcium Ringer solution but had no effect on PJM repolarization in a calcium-deficient, 4 mM magnesium Ringer solution. For EMR measurements the preparation was rendered mechanically quiescent by repeated challenges with isotonic KCl during an exposure of several hours to a calcium-free, 4 mM magnesium-1 mM EGTA Ringer solution. In these fibers, the microperfusion of 0.27 mM CARB together with 1.8 mM calcium plus 1.5 mM caffeine significantly increased the rate of EMR recovery above that observed in the absence of caffeine. Raising the calcium concentration to 10 mM had a similar effect; however, no additional increase was noted by the inclusion of 1.5 mM caffeine. It is suggested that the major role of caffeine in PJM desensitization is to increase the calcium permeability of the surface membrane. The transmembrane movement of calcium and the consequent intracellular accumulation of calcium is seen as a critical factor in controlling the rate of PJM desensitization.  相似文献   

3.
Several factors which influence the rate of inactivation of muscle postjunctional membrane (PJM) receptors during the sustained application of carbamylcholine (CARB) have been studied by two methods. The rate of inactivation was increased by elevating the tonicity of the bathing medium, by increasing the CARB concentration, by raising the calcium ion concentration, and by substituting SO4 = for Cl- ions in the extracellular fluid. The relative effectiveness of calcium and other divalent cations in receptor inactivation was compared. In the absence of calcium, other divalent cations such as magnesium, strontium, or manganese were not efficient substitutes for calcium. In the presence of calcium, the addition of strontium or manganese ions accelerated the rate of receptor inactivation, but the addition of magnesium (up to 12 mM) inhibited this process. The inactivation of the membrane receptors in denervated muscle fibers was found to be similar to that in innervated muscle fibers. Various factors in PJM receptor inactivation are discussed. It is suggested that PJM receptor inactivation is influenced by the binding of calcium ions to sites on the internal surface of the PJM.  相似文献   

4.
Choline permeability in cardiac muscle cells of the cat   总被引:2,自引:1,他引:1  
Permeability of the cardiac cell membrane to choline ions was estimated by measuring radioactive choline influx and efflux in cat ventricular muscle. Maximum values for choline influx in 3.5 and 137 mM choline were respectively 0.56 and 9 pmoles/cm2·sec. In 3.5 mM choline the intracellular choline concentration was raised more than five times above the extracellular concentration after 2 hr of incubation. In 137 mM choline, choline influx corresponded to the combined loss of intracellular Na and K ions. Paper chromatography of muscle extracts indicated that choline was not metabolized to any important degree. The accumulation of intracellular choline rules out the existence of an efficient active pumping mechanism. By measuring simultaneously choline and sucrose exchange, choline efflux was analyzed in an extracellular phase, followed by two intracellular phases: a rapid and a slow one. Efflux corresponding to the rapid phase was estimated at 16–45 pmoles/cm2·sec in 137 mM choline and at 1.3–3.5 pmoles/cm2·sec in 3.5 mM choline; efflux in 3.5 mM choline was proportional to the intracellular choline concentration. The absolute figures for unidirectional efflux were much larger than the net influx values. The data are compared to Na and Li exchange in heart cells. Possible mechanisms for explaining the choline behavior in heart muscle are discussed.  相似文献   

5.
Thin strips of frog ventricle were isolated and bathed for 15 min in a solution containing 140 mM KCl, 5 mM Na2ATP, 3 mM EDTA, and 10 mM Tris buffer at pH 7.0. The muscle was then exposed to contracture solutions containing 140 mM KCl, 5 mM Na2ATP, 1 mM MgCl2, 10 mM Tris, 3 mM EGTA, and CaCl2 in amounts to produce concentrations of free calcium from 10-4.8 M to 10-9 M. The muscles developed some tension at approximately 10-8 M, and maximum tension was achieved in 10-5 M Ca++. They relaxed in Ca++ concentrations less than 10-8 M. The development of tension by the EDTA-treated muscles was normalized by comparison with twitch tension at a stimulation rate of 9 per min before exposure to EDTA. In 10-5 M Ca++ tension was always several times the twitch tension and was greater than the contracture tension of a frog ventricular strip in KCl low Na-Ringer. Tension equal to half-maximum was produced at approximately 10-6.2 M Ca++. Intracellular recording of membrane potential indicated that after EDTA treatment the resting potential of cells in Ringer solution with 10-5 M Ca or less was between 5 and 20 mv. Contracture solutions did not produce tension without prior treatment with EDTA. The high permeability of the membrane produced by EDTA was reversed and the normal resting and action potentials restored in 1 mM Ca-Ringer. Similar studies of EDTA-treated rabbit right ventricular papillary muscle produced a similar tension vs. Ca++ concentration relation, and the high permeability state reversed with exposure to normal Krebs solution.  相似文献   

6.
Calcium compartments and fluxes were measured by kinetic analyses in kidney cell suspensions in a three-compartment closed system. The fast phase influx and compartment size increase linearly with the medium calcium and the half-time of exchange is only 1.3 min which suggests that the fast component is extracellular. The slow phase compartment rises linearly from 0.1 to 0.5 mmole calcium/kg cell water when the medium calcium is raised from 0.02 to 2.5 mM. The slow phase calcium influx exhibits the pattern of saturation kinetics with a V max of 0.065 µµmole cm-2 sec-1 and a Km of 0.3 mM indicating that it is a carrier-mediated transport process. PTH has no effect on the fast phase of calcium influx, but increases both calcium influx and the calcium pool size of the slow component. The maximum effect is obtained at medium calcium concentration of 1.3 mM. Below 0.3 mM extracellular calcium, the effects of the hormone cannot be demonstrated. PTH increases the V max of calcium influx from 0.065 to 0.128 µµmole cm-2 sec-1 while the Km rises from 0.3 to 1.15 mM. These findings suggest that PTH increases the translocation of the calcium-carrier complex across the membrane and not the carrier concentration or its binding affinity for calcium.  相似文献   

7.
The membrane excitability and contraction were examined in single barnacle muscle fibers with different internal Ca++ concentrations by using buffer solutions made up with EGTA and Ca-gluconate in various proportions. During the passage of dc currents the membrane shows all-or-none spike potentials for internal Ca++ concentrations below about 8 x 10-8 M, oscillatory potential changes in the range between 8 x 10-8 to 5 x 10-7 M, but neither oscillatory nor spike potentials were seen for concentrations above 5 x 10-7 M. All-or-none spike potentials were suppressed when the internal Mg++ concentration exceeded 5 mM. The suppression threshold of the internal Ca++ concentration for the Sr spike is much higher than that for the Ca spike. The threshold concentration of internal Ca++ for contraction was about 8 x 10-7 M.  相似文献   

8.
Unidirectional Na fluxes in isolated fibers from the frog''s semitendinosus muscle were measured in the presence of strophanthidin and increased external potassium ion concentrations. Strophanthidin at a concentration of 10-5 M inhibited about 80 per cent of the resting Na efflux without having any detectable effect on the resting Na influx. From this it is concluded that the major portion of the resting Na efflux is caused by active transport processes. External potassium concentrations from 2.5 to 7.5 mM had little effect on resting Na efflux. Above 7.5 mM and up to 15 mM external K, the Na efflux was markedly stimulated; with 15 mM K the Na influx was 250 to 300 per cent greater than normal. On the other hand, Na influx was unchanged with 15 mM K. The stimulated Na efflux with the higher concentrations was not appreciably reduced when choline or Li was substituted for external Na, but was completely inhibited by 10-5 M strophanthidin. From these findings it is concluded that the active transport of Na is stimulated by the higher concentrations of K. It is postulated that this effect on the Na "pump" is produced as a result of the depolarization of the muscle membranes and is related to the increased metabolism and heat production found under conditions of high external K.  相似文献   

9.
An apparatus is described which collects the effluent from the center 0.7 cm of a single muscle fiber or bundle of muscle fibers. It was used to study the efflux of 45Ca from twitch muscle fibers. The efflux can be described by three time constants 18 ± 2 min, 300 ± 40 min, and 882 ± 172 min. These kinetics have been interpreted as those of a three-compartment system. The fastest is thought to be on the surface membrane of the muscle and of the T system. It contains 0.07 ± 0.03 mM Ca/liter of fiber and the Ca efflux is 0.11 ± 0.04 pM Ca/cm2. sec. The intermediate rate compartment is thought to represent the Ca in the longitudinal reticulum. It contains approximately 0.77 mM Ca/liter. Only the efflux from this compartment increases during stimulation. The most slowly exchanging compartment is poorly defined. Neither Ca-free nor Ni-Ringer solutions alter the rate of loss from the fastest exchanging compartment. Ni apparently alters the rate of loss from the slowest compartment.  相似文献   

10.
The effects on the Schwann cell electrical potential of external ionic concentrations and of K-strophanthoside were investigated. Increasing (K)o depolarized the cell. The potential is related to the logarithm of (K)o in a quasi-linear fashion. The linear portion of the curve has a slope of 45 mv/ten-fold change in (K)o. Diminutions of (Na)o and (Cl)o produced only small variations in the potential. Calcium and magnesium can be replaced by 44 mM calcium without altering the potential. Increase of (Ca)o to 88 mM produced about 10 mv hyperpolarization. The cell was hyperpolarized by 11 mv and 4 mv within 1 min after applying K-strophanthoside at concentrations of 10-3 and 10-5 M, respectively. No variations of cellular potassium, sodium, or chloride were observed 3 min after applying the glycoside. The hyperpolarization caused by 10-3 M K-strophanthoside was not observed when (K)o was diminished to 1 or 0.1 mM or was increased to 30 mM. At a (K)o of 30 mM, 10-2 M strophanthoside was required to produce the hyperpolarizing effect. In high calcium, the cell was further hyperpolarized by the glycoside. The initial hyperpolarization caused by the glycoside was followed by a gradual depolarization and a decrease of the cellular potassium concentration. The results indicate that the Schwann cell potential of about -40 mv is due to ionic diffusion, mainly of potassium, and to a cardiac glycoside-sensitive ion transport process.  相似文献   

11.
Unidirectional Na fluxes from frog''s striated muscle were measured in the presence of 0 to 5 mM sodium azide. With azide concentrations of 2 and 5 mM the Na efflux was markedly stimulated; the Na efflux with 5 mM azide was about 300 per cent greater than normal. A similar increase was present when all but the 5.0 mM sodium added with azide was replaced by choline. 10-5 M strophanthidin abolished the azide effect on Na24 efflux. Concentrations of azide of 1.0 mM or less had no effect on Na efflux. The Na influx, on the other hand, was only increased by 41 per cent in the presence of 5 mM NaN3. From these findings it is concluded that the active transport of Na is stimulated by the higher concentrations of azide. The hypothesis is advanced that the active transport of Na is controlled by the transmembrane potential and that the stimulation of Na efflux is produced as a consequence of the membrane depolarization caused by the azide.  相似文献   

12.
45Ca efflux was studied in resting anterior byssal retractor muscle. The data are described by a three-compartment system. The most rapidly exchanging compartment, with an average time constant of 7 min, contains about 0.9 mM Ca/liter muscle, and probably represents extracellular space. A second compartment, with a time constant of 83 ± 5 min, contains 1.2 mM Ca/liter, and may represent a membrane calcium store. The presence of a third, or more, compartments, probably representing sarcoplasmic reticulum and contractile proteins, is indicated by the fact that the final time constant is 10 times the 83 min time constant of the second compartment. Serotonin (5HT), on initial application, increases 45Ca efflux from this third compartment(s). This effect has a typical dose-response relationship with a maximum response appearing at 10-7 M5HT. In addition, removal of 5HT causes a secondary increase in 45Ca efflux which has a maximum at a 5HT concentration of 10-7 M and declines at both higher and lower doses.  相似文献   

13.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

14.
Biphasic potassium contractures in frog muscle fibers   总被引:2,自引:1,他引:1  
Potassium-induced contractures were studied in single fibers from the semitendinosus muscle of Rana pipiens. Contractures elicited by solutions containing 60–117 mM potassium and 120 mM chloride were biphasic, consisting of a rapid initial contraction with a duration at 23°C of less than 1 sec followed by a slow response with a duration of many seconds. At 13°C, the initial response was greatly prolonged so that the two responses virtually fused into a single smooth contracture. Membrane potential in high potassium, high chloride solutions underwent a transient peak depolarization, probably as a result of time-dependent changes in membrane conductance during depolarization. It is proposed that this complex time course of depolarization gives rise to the biphasic contracture response.  相似文献   

15.
Potassium fluxes in dialyzed squid axons   总被引:11,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

16.
Some factors influencing sodium extrusion by internally dialyzed squid axons   总被引:15,自引:12,他引:3  
Squid giant axons were internally dialyzed by a technique previously described. In an axon exposed to cyanide seawater for 1 hr and dialyzed with an ATP-free medium, the Na efflux had a mean value of 1.3 pmole/cm2sec when [Na]i was 88 mM, in quantitative agreement with flux ratio calculations for a purely passive Na movement. When ATP at a concentration of 5–10 mM was supplied to the axoplasm by dialysis, Na efflux rose almost 30-fold, while if phosphoarginine, 10 mM, was supplied instead of ATP, the Na efflux rose only about 15-fold. The substitution of Li for Na in the seawater outside did not affect the Na efflux from an axon supplied with ATP, while a change to K-free Na seawater reduced the Na efflux to about one-half. When special means were used to free an axon of virtually all ADP, the response of the Na efflux to dialysis with phosphoarginine (PA) at 10 mM was very small (an increment of ca. 3 pmole/cm2sec) and it can be concluded that more than 96% of the Na efflux from an axon is fueled by ATP rather than PA. Measurements of [ATP] in the fluid flowing out of the dialysis tube when the [ATP] supplied was 5 mM made it possible to have a continuous measurement of ATP consumption by the axon. This averaged 43 pmole/cm2sec. The ATP content of axons was also measured and averaged 4.4 mM. Estimates were made of the activities of the following enzymes in axoplasm: ATPase, adenylate kinase, and arginine phosphokinase. Values are scaled to 13°C.  相似文献   

17.
Sartorius muscle cells from the frog were stored in a K-free Ringer solution at 3°C until their average sodium contents rose to around 23 mM/kg fiber (about 40 mM/liter fiber water). Such muscles, when placed in Ringer''s solution containing 60 mM LiCl and 50 mM NaCl at 20°C, extruded 9.8 mM/kg of sodium and gained an equivalent quantity of lithium in a 2 hr period. The presence of 10-5 M strophanthidin in the 60 mM LiCl/50 mM NaCl Ringer solution prevented the net extrusion of sodium from the muscles. Lithium ions were found to enter muscles with a lowered internal sodium concentration at a rate about half that for entry into sodium-enriched muscles. When sodium-enriched muscles labeled with radioactive sodium ions were transferred from Ringer''s solution to a sodium-free lithium-substituted Ringer solution, an increase in the rate of tracer sodium output was observed. When the lithium-substituted Ringer solution contained 10-5 M strophanthidin, a large decrease in the rate of tracer sodium output was observed upon transferring labeled sodium-enriched muscles from Ringer''s solution to the sodium-free medium. It is concluded that lithium ions have a direct stimulating action on the sodium pump in skeletal muscle cells and that a significantly large external sodium-dependent component of sodium efflux is present in muscles with an elevated sodium content. In the sodium-rich muscles, about 23% of the total sodium efflux was due to strophanthidin-insensitive Na-for-Na interchange, about 67% being due to strophanthidin-sensitive sodium pumping.  相似文献   

18.
Quinine and caffeine effects on 45Ca movements in frog sartorius muscle   总被引:5,自引:1,他引:4  
1 mM caffeine, which produces only twitch potentiation and not contracture in frog sartorius muscle, increases both the uptake and release of 45Ca in this muscle by about 50 %, thus acting like higher, contracture-producing concentrations but less intensely. Quinine increases the rate of release of 45Ca from frog sartorius but not from the Achilles tendon. The thresholds for the quinine effect on 45Ca release and contracture tension are about 0.1 and 0.5 mM, respectively, at pH 7.1. Quinine (2 mM) also doubles the uptake of 45Ca by normally polarized muscle. However, there are variable effects of quinine upon 45Ca uptake in potassium-depolarized muscle. Quinine (2 mM), increases the Ca, Na, and water content of muscle while decreasing the K content. Both caffeine (1 mM) and quinine (2 mM) act to release 45Ca from muscles that have been washed in Ringer''s solution from which Ca was omitted and to which EDTA (5 mM) was added. These results, correlated with those of others, indicate that a basic effect of caffeine and quinine on muscle is to directly release activator Ca2+ from the sarcoplasmic reticulum in proportion to the drug concentration. The drugs may also enhance the depolarization-induced Ca release caused by extra K+ or an action potential. In respect to the myoplasmic Ca2+ released by direct action of the drugs, a relatively high concentration is required to activate even only threshold contracture, but a much lower concentration, added to that released during excitation-contraction coupling, is associated with the condition causing considerable twitch potentiation.  相似文献   

19.
Skeletal muscle myofibrils, in the presence of 2 mM MgCl2 at pH 7.0, were found to have two classes of calcium-binding sites with apparent affinity constants of 2.1 x 106 M -1 (class 1) and ∼3 x 104 M -1 (class 2), respectively. At free calcium concentrations essential for the activation of myofibrillar contraction (∼10-6 M) there would be significant calcium binding only to the class 1 sites. These sites could bind about 1.3 µmoles of calcium per g protein. Extraction of myosin from the myofibrils did not alter their calcium-binding parameters. Myosin A, under identical experimental conditions, had little affinity for calcium. The class 1 sites are, therefore, presumed to be located in the I filaments. The class 1 sites could only be detected in F actin and myosin B preparations which were contaminated with the tropomyosin-troponin complex. Tropomyosin bound very little calcium. Troponin, which in conjunction with tropomyosin confers calcium sensitivity on actomyosin systems, could bind 22 µmoles of calcium per g protein with an apparent affinity constant of 2.4 x 106 M -1. In view of the identical affinity constants of the myofibrils and troponin and the much greater number of calcium-binding sites on troponin it is suggested that calcium activates myofibrillar contraction by binding to the troponin molecule.  相似文献   

20.
The predominant orientation of cilia in glycerol-extracted Paramecium is toward the posterior of the specimen in a KCl solution. The cilia became reoriented toward the anterior shortly after transfer of the extracted cell to a mixture of ATP, calcium, and zinc. The degree of response was graded as a function of the concentration of each of the three essential factors. Minimum concentrations for the maximum response were 0.2 mM in ATP, 0.8 mM in calcium, and 0.0002 mM in zinc. The observations support the hypothesis that cation-induced ciliary reversal in live specimens is initiated by calcium ions which become displaced from an inferred cellular cation exchanger system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号