共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Gram-positive bacterium Bacillus subtilis can initiate the process of sporulation under conditions of nutrient limitation. Here, we review some of the last 5?years of work in this area, with a particular focus on the decision to initiate sporulation, DNA translocation, cell-cell communication, protein localization and spore morphogenesis. The progress we describe has implications not only just for the study of sporulation but also for other biological systems where homologs of sporulation-specific proteins are involved in vegetative growth. 相似文献
3.
Recent work on cell division and chromosome orientation and partitioning in Bacillus subtilis has provided insights into cell cycle regulation during growth and development. The cell cycle is an integral part of development and entrance into sporulation is modulated by signals that transmit the status of DNA integrity, chromosome replication and segregation. In addition, B. subtilis modifies cell division and DNA segregation to establish cell-type-specific gene expression during sporulation. 相似文献
4.
RodA and rodB mutations cause rod-shaped Bacillus subtilis cells to become coccus-shaped when the growth temperature is increased from 30 to 45 degrees C. At 30 degrees C four rod strains sporulated as well as the genetically closely related rod+ strains. In contrast, at 45 degrees C the sporulation frequencies of rod strains decreased approximately 10(2)- to 10(4)-fold, while those of rod+ strains remained either unchanged or decreased only slightly. Temperature shift experiments and ultrastructural data indicated that coccus-shaped cells were unable to form prespore septa and were, therefore, inhibited at stage 0 of sporulation. 相似文献
5.
6.
Control of sporulation initiation in Bacillus subtilis 总被引:6,自引:0,他引:6
Sonenshein AL 《Current opinion in microbiology》2000,3(6):561-566
7.
About 80% of Bacillus subtilis cells form spores when grown in nutrient broth. In medium containing various short-chain aliphatic alcohols, the frequency of sporulation was reduced to 0.5%. Mutants sporulated in the presence of alcohols at a frequency of 30 to 40%. Sporulation in the wild-type cells was sensitive to alcohol at the beginning of sporulation (stage zero). Sensitivity to alcohol in the mutants was also at stage zero, even though the sensitivity was considerably reduced. This sensitivity of sporulation to alcohol is the phenotypic expression of a genetic locus designated ssa. Mutations at this locus lead to a decreased sensitivity of sporulation to alcohol without modifying the sensitivity of growth. Genetic analysis by transduction was bacteriophage PBS1 revealed that ssa mutations are near the previously described spo0A locus. ssa mutants also differ from wild-type cells in the composition of membrane phospholipids. The relative amount of phosphatidylglycerol increased, whereas the relative amount of phosphatidylethanolamine and lysylphosphatidylglycerol decreased relative to the proportions in the wild type. The distribution of fatty acids in membrane lipids is the same as in the wild type. No differential sensitivity of phospholipid metabolism to alcohol could be detected in the mutant. This work therefore reveals that the extensive, pleiotropic changes in the membranes of ssa mutants are the phenotypic reflection of alterations at a specific gene locus. 相似文献
8.
In response to nutrient limitations, Bacillus subtilis cells undergo a series of morphological and genetic changes that culminate in the formation of endospores. Conversely, excess catabolites inhibit sporulation. It has been demonstrated previously that excess catabolites caused a decrease in culture medium pH in a process that required functional AbrB. Culture medium acidification was also shown to inhibit sigmaH-dependent sporulation gene expression. The studies reported here investigate the effects of AbrB-mediated pH sensing on B. subtilis developmental competence. We have found that neither addition of a pH stabilizer, MOPS (pH 7.5), nor null mutations in abrB blocked catabolite repression of sporulation. Moreover, catabolite-induced culture medium acidification was observed in cultures of catabolite-resistant sporulation mutants, crsA47, rvtA11, and hpr-16, despite their efficient sporulation. These results suggest that AbrB-mediated pH sensing is not the only mechanism regulating catabolite repression of sporulation. The AbrB pathway may function to channel cells toward genetic competence, as opposed to other postexponential differentiation pathways. 相似文献
9.
In decadent sporulation mutants, sporulating populations are heterogeneous: the cells reach successive chemical and physical resistances with progressively decreasing frequencies. Each decadent mutant can be characterized by the shape and slope of the curve describing the frequency of cells resistant to various agents ('the resistance spectrum'). In some mutants the resistance spectrum decreases progressively from xylene resistance to heat resistance; in other mutants it decreases rapidly between octanol resistance and chloroform resistance. Electron microscopy showed that in two mutants the majority of the cells are blocked at stages III and IV; the number of cells that develop further to reach successive morphological stages falls off progressively. In two other mutants most cells reach stage V. Cortexless spores are also frequent. One of the decadent mutations, SpoL1, was localized between aroD and acf. The phenotype of decadent mutants is discussed in terms of sequential gene activation. 相似文献
10.
J E Walker 《The Biochemical journal》1971,121(3):571-573
11.
12.
Production of adenosine triphosphate in normal cells and sporulation mutants of Bacillus subtilis 总被引:26,自引:0,他引:26
W Klofat G Picciolo E W Chappelle E Freese 《The Journal of biological chemistry》1969,244(12):3270-3276
13.
The change of motility and the presence of flagella were followed throughout growth and sporulation in a standard sporulating strain and in 19 cacogenic sporulation mutants of Bacillus subtilis. For the standard strain, the fraction of motile cells decreased during the developmental period to less than 10% at T4. Motility was lost well before the cells lose their flagella. Conditions reducing the decrease of motility also reduced sporulation: motile cells never contained spores. The decrease of motility was not coupled with a decrease in the cellular concentration of adenosine 5'-triphosphate or a decline in oxygen consumption, but an uncoupling agent immediately destroyed motility at any time. Apparently, motility decreased during development because it became increasingly uncoupled from the energy generating systems of the cell. The motility of sporulation mutants decreased after the end of growth at the same time as or earlier than the motility of the standard strain; the early decrease of motility in an aconitase mutant, but not that in an alpha-ketoglurate dehydrogenase mutant, could be avoided by addition of L-glutamate. Sporulation or related events such as extracellular antibiotic or protease production were not needed for the motility decline. 相似文献
14.
Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis 总被引:5,自引:13,他引:5
下载免费PDF全文

The phenotypic properties of representatives of the five genetic classes of pleiotropic-negative sporulation mutants have been investigated. Protease production, alkaline and neutral proteases, was curtailed in spoA mutants, but the remainder of mutant classes produced both proteases, albeit at reduced levels. The spoA and spoB mutants plaqued phi2 and phi15 at high efficiency, but the efficiency of plating of these phages on spoE, spoF, and spoH mutants was drastically reduced. Antibiotic was produced by the spoH mutants and to a degree by some spoF mutants, but the other classes did not produce detectable activity. The spoA mutants were less responsive to catabolite repression of histidase synthesis by glucose than was the wild type. Severe catabolite repression could be induced in spoA mutants by amino acid limitation, suggesting that the relaxation of catabolite repression observed is not due to a defect in the mechanism of catabolite repression. Although others have shown a perturbation in cytochrome regulation in spoA and spoB mutants, the primary dehydrogenases, succinate dehydrogenase and reduced nicotinamide adenine dinucleotide dehydrogenase, leading to these cytochromes are unimpaired in all mutant classes. A comparison of the structural components of cell walls and membranes of spoA and the wild type is made. The pleiotropic phenotypes of these mutants are discussed. 相似文献
15.
16.
17.
Four major heat-shock proteins (hsps) with apparent molecular masses of 84, 69, 32 and 22 kDa were detected in exponentially growing stationary phase and sporulating cells of Bacillus subtilis heat-shocked from 30 to 43 degrees C. The most abundant, hsp69, is probably analogous to the E. coli groEL protein. These proteins were transiently inducible by heat-shock. Partial purification of RNA polymerase revealed several other minor hsps. One of these, a 48 kDa polypeptide probably corresponds to sigma 43. The synthesis of this polypeptide and at least two other proteins appeared to be under sporulation and heat-shock regulation and was affected by the SpoOA mutation. 相似文献
18.
19.
Summary Sporulation gene spoIVC of Bacillus subtilis was cloned by the prophage transformation method in temperate phage 105. The specialized transducing phage, 105spoIVC-1, restored the sporulation of the asporogenous mutant of B. subtilis strain 1S47 (spoIVC133). Transformation experiments showed that the spoIVC gene resides on a 7.3 kb HindIII restriction fragment. Subsequent analysis of the 7.3 kb HindIII fragment with restriction endonuclease EcoRI showed that the spoIVC gene resides on a 3.6 kb EcoRI fragment within the 7.3 kb fragment. The 3.6 kb fragment was recloned into the unique EcoRI site of plasmid pUB110 and deletion derivatives having a deletion within the 3.6 kb insert were constructed. The plasmid carrying the entire spoIVC gene restored the sporulation of strain HU1214 (spoIVC133, recE4) at a frequency of 107 spores/ml, and reduced the sporulation of strain HU1018 (spo
+, recE4) to 107 spores/ml. 相似文献
20.
T Nishihara 《Microbiology and immunology》1979,23(8):727-734
Growth and sporulation were examined for 30 auxotrophs of Bacillus subtilis in a chemically defined medium with suboptimal amounts of nutrients. All strains except for some adenine-requiring mutants could not overtake sporulation stage II when amino acids, vitamins, or bases were limited, whereas they sporulated fairly well without limitation. Abnormal structures, a cell with thickened cell wall and a cell with several refractile bodies, were found in some strains after the vegetative growth stopped. 相似文献