首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Lu QR  Sun T  Zhu Z  Ma N  Garcia M  Stiles CD  Rowitch DH 《Cell》2002,109(1):75-86
The oligodendrocyte lineage genes Olig1 and Olig2 encode related bHLH proteins that are coexpressed in neural progenitors. Targeted disruption of these two genes sheds light on the ontogeny of oligodendroglia and genetic requirements for their development from multipotent CNS progenitors. Olig2 is required for oligodendrocyte and motor neuron specification in the spinal cord. Olig1 has roles in development and maturation of oligodendrocytes, evident especially within the brain. Both Olig genes contribute to neural pattern formation. Neither Olig gene is required for astrocytes. These findings, together with fate mapping analysis of Olig-expressing cells, indicate that oligodendrocytes are derived from Olig-specified progenitors that give rise also to neurons.  相似文献   

4.
5.
Cai J  Qi Y  Hu X  Tan M  Liu Z  Zhang J  Li Q  Sander M  Qiu M 《Neuron》2005,45(1):41-53
In the developing spinal cord, early progenitor cells of the oligodendrocyte lineage are induced in the motor neuron progenitor (pMN) domain of the ventral neuroepithelium by the ventral midline signal Sonic hedgehog (Shh). The ventral generation of oligodendrocytes requires Nkx6-regulated expression of the bHLH gene Olig2 in this domain. In the absence of Nkx6 genes or Shh signaling, the initial expression of Olig2 in the pMN domain is completely abolished. In this study, we provide the in vivo evidence for a late phase of Olig gene expression independent of Nkx6 and Shh gene activities and reveal a brief second wave of oligodendrogenesis in the dorsal spinal cord. In addition, we provide genetic evidence that oligodendrogenesis can occur in the absence of hedgehog receptor Smoothened, which is essential for all hedgehog signaling.  相似文献   

6.
Vallstedt A  Klos JM  Ericson J 《Neuron》2005,45(1):55-67
Studies have indicated that oligodendrocytes in the spinal cord originate from a ventral progenitor domain defined by expression of the oligodendrocyte-determining bHLH proteins Olig1 and Olig2. Here, we provide evidence that progenitors in the dorsal spinal cord and hindbrain also produce oligodendrocytes and that the specification of these cells may result from a dorsal evasion of BMP signaling over time. Moreover, we show that the generation of ventral oligodendrocytes in the spinal cord depends on Nkx6.1 and Nkx6.2 function, while these homeodomain proteins in the anterior hindbrain instead suppress oligodendrocyte specification. The opposing roles for Nkx6 proteins in the spinal cord and hindbrain, in turn, appear to reflect that oligodendrocytes are produced by distinct ventral progenitor domains at these axial levels. Based on these findings, we propose that oligodendrocytes derive from several distinct positional origins and that the activation of Olig1/2 at different positions is controlled by distinct genetic programs.  相似文献   

7.
8.
Basic helix-loop-helix factors in cortical development   总被引:38,自引:0,他引:38  
Ross SE  Greenberg ME  Stiles CD 《Neuron》2003,39(1):13-25
  相似文献   

9.
10.
11.
12.
13.
14.
Gabay L  Lowell S  Rubin LL  Anderson DJ 《Neuron》2003,40(3):485-499
The CNS is thought to develop from self-renewing stem cells that generate neurons, astrocytes, and oligodendrocytes. Other data, however, have suggested that astrocytes and oligodendrocytes are generated from separate progenitor populations. To reconcile these observations, we have prospectively isolated progenitors that do or do not express Olig2, an oligodendrocyte bHLH determination factor. Both Olig2(-) and Olig2(+) progenitors can behave as tripotential CNS stem cells (CNS-SCs) in vitro. Growth in FGF-2 causes induction of Olig2 in the former population, permitting oligodendrocyte differentiation; extinction of Olig2 in the latter cells permits astrocyte differentiation. The induction of Olig2 by FGF-2 is mediated, in part, via endogenous Sonic Hedgehog. These data indicate that clonogenic competence to generate neurons, astrocytes, and oligodendrocytes reflects a deregulation of dorsoventral patterning during expansion in vitro, raising the question of whether such trifatent cells actually exist in vivo.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号