首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A Rhodobacter sphaeroides ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain was constructed that was complemented by plasmids containing either the form I or form II CO2 fixation gene cluster. This strain was also complemented by genes encoding foreign RubisCO enzymes expressed from a Rhodospirillum rubrum RubisCO promoter. In R. sphaeroides, the R. rubrum promoter was regulated, resulting in variable levels of disparate RubisCO molecules under different growth conditions. Photosynthetic growth of the R. sphaeroides deletion strain complemented with cyanobacterial RubisCO revealed physiological properties reflective of the unique cellular environment of the cyanobacterial enzyme. The R. sphaeroides RubisCO deletion strain and R. rubrum promoter system may be used to assess the properties of mutagenized proteins in vivo, as well as provide a potential means to select for altered RubisCO molecules after random mutagenesis of entire genes or gene regions encoding RubisCO enzymes.  相似文献   

3.
Many nutritive symbioses between chemoautotrophic bacteria and invertebrates, such as Solemya velum, have delta(13)C values of approximately -30 to -35%, considerably more depleted than phytoplankton. Most of the chemoautotrophic symbionts fix carbon with a form IA ribulose 1,5-bisphosphate carboxylase (RubisCO). We hypothesized that this form of RubisCO discriminates against (13)CO(2) to a greater extent than other forms. Solemya velum symbiont RubisCO was cloned and expressed in Escherichia coli, purified and characterized. Enzyme from this recombinant system fixed carbon most rapidly at pH 7.5 and 20-25 degrees C. Surprisingly, this RubisCO had an epsilon-value (proportional to the degree to which the enzyme discriminates against (13)CO(2)) of 24.4 per thousand, similar to form IB RubisCOs, and higher than form II RubisCOs. Samples of interstitial water from S. velum's habitat were collected to determine whether the dissolved inorganic carbon (DIC) could contribute to the negative delta(13)C values. Solemya velum habitat DIC was present at high concentrations (up to approximately 5 mM) and isotopically depleted, with delta(13)C values as low as approximately -6%. Thus environmental DIC, coupled with a high degree of isotopic fractionation by symbiont RubisCO likely contribute to the isotopically depleted delta(13)C values of S. velum biomass, highlighting the necessity of considering factors at all levels (from environmental to enzymatic) in interpreting stable isotope ratios.  相似文献   

4.
The autotrophic ammonia-oxidizing bacteria (AOB), which play an important role in the global nitrogen cycle, assimilate CO(2) by using ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Here we describe the first detailed study of RubisCO (cbb) genes and proteins from the AOB. The cbbLS genes from Nitrosospira sp. isolate 40KI were cloned and sequenced. Partial sequences of the RubisCO large subunit (CbbL) from 13 other AOB belonging to the beta and gamma subgroups of the class Proteobacteria are also presented. All except one of the beta-subgroup AOB possessed a red-like type I RubisCO with high sequence similarity to the Ralstonia eutropha enzyme. All of these new red-like RubisCOs had a unique six-amino-acid insert in CbbL. Two of the AOB, Nitrosococcus halophilus Nc4 and Nitrosomonas europaea Nm50, had a green-like RubisCO. With one exception, the phylogeny of the AOB CbbL was very similar to that of the 16S rRNA gene. The presence of a green-like RubisCO in N. europaea was surprising, as all of the other beta-subgroup AOB had red-like RubisCOs. The green-like enzyme of N. europaea Nm50 was probably acquired by horizontal gene transfer. Functional expression of Nitrosospira sp. isolate 40KI RubisCO in the chemoautotrophic host R. eutropha was demonstrated. Use of an expression vector harboring the R. eutropha cbb control region allowed regulated expression of Nitrosospira sp. isolate 40KI RubisCO in an R. eutropha cbb deletion strain. The Nitrosospira RubisCO supported autotrophic growth of R. eutropha with a doubling time of 4.6 h. This expression system may allow further functional analysis of AOB cbb genes.  相似文献   

5.
Ribulose 1,5‐bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2‐dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO‐encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of the Gallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possess CO2/O2 specificity typical of form II enzymes. X‐ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2‐fixing enzymes not previously characterized.  相似文献   

6.
Whole-cell CO2 fixation and ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity were determined in Rhodobacter sphaeroides wild-type and mutant strains. There is no obvious difference in the levels of whole-cell CO2 fixation for the wild type, a form I RubisCO deletion mutant, and a form II RubisCO deletion mutant. No ribulose 1,5-bisphosphate-dependent CO2 fixation was detected in a form I-form II RubisCO double-deletion mutant (strain 16) or strain 16PHC, a derivative from strain 16 which was selected for the ability to grow photoheterotrophically with CO2 as an electron acceptor. However, significant levels of whole-cell CO2 fixation were detected in both strains 16 and 16PHC. Strain 16PHC exhibited CO2 fixation rates significantly higher than those of strain 16; the rates found for strain 16PHC were 30% of the level found in photoheterotrophically grown wild-type strain HR containing both form I and form II RubisCO and 10% of the level of the wild-type strain grown photolithoautotrophically. Strain 16PHC could not grow photolithoautotrophically in a CO2-H2 atmosphere; however, CO2 fixation catalyzed by photoheterotrophically grown strain 16PHC was repressed by addition of the alternate electron acceptor dimethyl sulfoxide. Dimethyl sulfoxide addition also influenced RubisCO activity under photolithoautotrophic conditions; 40 to 70% of the RubisCO activity was reduced without significantly influencing growth. Strain 16PHC and strain 16 contain nearly equivalent but low levels of pyruvate carboxylase, indicating that CO2 fixation enzymes other than pyruvate carboxylase contribute to the ability of strain 16PHC to grow with CO2 as an electron acceptor.  相似文献   

7.
8.
9.
About 30 years have now passed since it was discovered that microbes synthesize RubisCO molecules that differ from the typical plant paradigm. RubisCOs of forms I, II, and III catalyze CO(2) fixation reactions, albeit for potentially different physiological purposes, while the RubisCO-like protein (RLP) (form IV RubisCO) has evolved, thus far at least, to catalyze reactions that are important for sulfur metabolism. RubisCO is the major global CO(2) fixation catalyst, and RLP is a somewhat related protein, exemplified by the fact that some of the latter proteins, along with RubisCO, catalyze similar enolization reactions as a part of their respective catalytic mechanisms. RLP in some organisms catalyzes a key reaction of a methionine salvage pathway, while in green sulfur bacteria, RLP plays a role in oxidative thiosulfate metabolism. In many organisms, the function of RLP is unknown. Indeed, there now appear to be at least six different clades of RLP molecules found in nature. Consideration of the many RubisCO (forms I, II, and III) and RLP (form IV) sequences in the database has subsequently led to a coherent picture of how these proteins may have evolved, with a form III RubisCO arising from the Methanomicrobia as the most likely ultimate source of all RubisCO and RLP lineages. In addition, structure-function analyses of RLP and RubisCO have provided information as to how the active sites of these proteins have evolved for their specific functions.  相似文献   

10.
Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer   总被引:1,自引:0,他引:1  
CO(2) fixation is one of the most important processes on the Earth's surface, but our current understanding of the occurrence and importance of chemolithoautotrophy in the terrestrial subsurface is poor. Groundwater ecosystems, especially at organically polluted sites, have all the requirements for autotrophic growth processes, and CO(2) fixation is thus suggested to contribute significantly to carbon flux in these environments. We explored the potential for autotrophic CO(2) fixation in microbial communities of a petroleum hydrocarbon-contaminated aquifer by detection of functional marker genes (cbbL, cbbM), encoding different forms of the key enzyme RubisCO of the Calvin-Benson-Bassham cycle. Quantification of (red-like) cbbL genes revealed highest numbers at the upper fringe of the contaminant plume and the capillary fringe where reduced sulphur and iron species are regularly oxidized in the course of groundwater table changes. Functional gene sequences retrieved from this area were most closely related to sequences of different thiobacilli. Moreover, several cultures could be enriched from fresh aquifer material, all of which are able to grow under chemolithoautotrophic conditions. A novel, nitrate-reducing, thiosulfate-oxidizing bacterial strain, recently described as Thiobacillus thiophilus D24TN(T) sp. nov., was shown to carry and transcribe RubisCO large-subunit genes of form I and II. Enzyme tests proved the actual activity of RubisCO in this strain.  相似文献   

11.
Abstract Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) was purified from an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus MH-110. The protein has a M r value of approximately 110 000, and is composed of two identical subunits of 55 000. To our knowledge, the existence of L2-form RubisCO in a chemolithoautotrophic bacterium is first reported in this paper. The N-terminal amino acid sequence determination of the purified enzyme showed high homology with those of the L2-form RubisCO of Rhodospirillum rubrum and the L x -form RubisCO from Rhodobacter sphaeroides .  相似文献   

12.
The cosmopolitan, bloom‐forming diatom, Skeletonema costatum, is a prominent primary producer in coastal oceans, fixing CO2 with ribulose 1,5‐bisphosphate carboxylase/oxygenase (RubisCO) that is phylogenetically distinct from terrestrial plant RubisCO. RubisCOs are subdivided into groups based on sequence similarity of their large subunits (IA–ID, II, and III). ID is present in several major oceanic primary producers, including diatoms such as S. costatum, coccolithophores, and some dinoflagellates, and differs substantially in amino acid sequence from the well‐studied IB enzymes present in most cyanobacteria and in green algae and plants. Despite this sequence divergence, and differences in isotopic discrimination apparent in other RubisCO enzymes, stable carbon isotope compositions of diatoms and other marine phytoplankton are generally interpreted assuming enzymatic isotopic discrimination similar to spinach RubisCO (IB). To interpret phytoplankton δ13C values, S. costatum RubisCO was characterized via sequence analysis, and measurement of its KCO2 and Vmax, and degree of isotopic discrimination. The sequence of this enzyme placed it among other diatom ID RubisCOs. Michaelis‐Menten parameters were similar to other ID enzymes (KCO2 = 48.9 ± 2.8 μm ; Vmax = 165.1 ± 6.3 nmol min?1 mg?1). However, isotopic discrimination (ε = [12k/13k ? 1] × 1000) was low (18.5‰; 17.0–19.9, 95% CI) when compared to IA and IB RubisCOs (22–29‰), though not as low as ID from coccolithophore, Emiliania huxleyi (11.1‰). Variability in εvalues among RubisCOs from primary producers is likely reflected in δ13C values of oceanic biomass. Currently, δ13C variability is ascribed to physical or chemical factors (e.g. illumination, nutrient availability) and physiological responses to these factors (e.g. carbon‐concentrating mechanisms). Estimating the importance of these factors from δ13C measurements requires an accurate εvalue, and a mass‐balance model using the εvalue for S. costatum RubisCO is presented. Clearly, appropriate εvalues must be included in interpreting δ13C values of environmental samples.  相似文献   

13.
Form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) from Rhodobacter sphaeroides is inactivated upon the addition of organic acids to photolithoautotrophically grown cultures. Activity recovers after the dissipation of the organic acid from the culture. The inactivation process depends on both the concentration of the organic compound and the nitrogen status of the cells. The inactivated RubisCO has been purified and was shown to exhibit mobility on both nondenaturing and sodium dodecyl sulfate gels different from that of the active enzyme prepared from cells not treated with organic acids. However, the Michaelis constants for ribulose 1,5-bisphosphate and CO2 or O2 were not dramatically altered. Purified inactivated RubisCO could be activated in vitro by increasing the temperature or the levels of Mg(II), and this activation was accompanied by changes in the electrophoretic mobility of the protein. When foreign bacterial RubisCO genes were expressed in an R. sphaeroides host strain lacking the ability to synthesize endogenous RubisCO, only slight inactivation of RubisCO activity was attained.  相似文献   

14.
Rhodobacter capsulatus fixes CO2 via the Calvin reductive pentose phosphate pathway and, like some other nonsulfur purple bacteria, is known to synthesize two distinct structural forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Cosmid clones that hybridized to form I (cbbLcbbS) and form II (cbbM) RubisCO gene probes were isolated from a genomic library of R. capsulatus strain SB1003. Southern blotting and hybridization analysis with gene-specific probes derived from Rhodobacter sphaeroides revealed that R. capsulatus cbbM is clustered with genes encoding other enzymes of the Calvin cycle, including fructose 1,6/sedoheptulose 1,7-bisphosphatase (cbbF), phosphoribulokinase (cbbP), transketolase (cbbT), glyceraldehyde-3-phosphate dehydrogenase (cbbG), and fructose 1,6-bisphosphate aldolase (cbbA), as well as a gene (cbbR) encoding a divergently transcribed LysR-type regulatory protein. Surprisingly, a cosmid clone containing the R. capsulatus form I RubisCO genes (cbbL and cbbS) failed to hybridize to the other cbb structural gene probes, unlike the situation with the closely related organism R. sphaeroides. The form I and form II RubisCO genes were cloned into pUC-derived vectors and were expressed in Escherichia coli to yield active recombinant enzyme in each case. Complementation of a RubisCO-deletion strain of R. sphaeroides to photosynthetic growth by R. capsulatus cbbLcbbS or cbbM was achieved using the broad host-range vector, pRK415, and R. sphaeroides expression vector pRPS-1. Received: 6 June 1995 / Accepted: 29 September 1995  相似文献   

15.
16.
The cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large and small subunits in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 were cloned and sequenced. The deduced gene products, CbbL and CbbS, had 93 and 87% identity with Thiobacillus intermedius CbbL and Nitrobacter winogradskyi CbbS, respectively. Expression of cbbL and cbbS in Escherichia coli led to the detection of RubisCO activity in the presence of 0.1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG). To our knowledge, this is the first paper to report the genes involved in the carbon fixation reaction in chemolithotrophic ammonia-oxidizing bacteria.  相似文献   

17.
Filamentous cyanobacteria of the genus Anabaena contain a unique open reading frame, rbcX, which is juxtaposed and cotranscribed with the genes (rbcL and rbcS) encoding form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Plasmid constructions containing the genes from Anabaena sp. strain CA were prepared, and expression studies in Escherichia coli indicated that the product of the rbcX gene mimicked the ability of chaperonin proteins to facilitate the proper folding of recombinant RubisCO proteins. The purified recombinant Anabaena sp. strain CA RubisCO, much like the RubisCO enzymes from other cyanobacteria, was shown not to undergo inhibition of activity during a time course experiment, and the properties of this chaperoned recombinant protein appear to be consistent with those of the enzyme isolated from the native organism.  相似文献   

18.
19.
20.
Representatives of the genus Beijerinckia are known as heterotrophic, dinitrogen-fixing bacteria which utilize a wide range of multicarbon compounds. Here we show that at least one of the currently known species of this genus, i.e., Beijerinckia mobilis, is also capable of methylotrophic metabolism coupled with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. A complete suite of dehydrogenases commonly involved in the sequential oxidation of methanol via formaldehyde and formate to CO2 was detected in cell extracts of B. mobilis grown on CH3OH. Carbon dioxide produced by oxidation of methanol was further assimilated via the RuBP pathway as evidenced by reasonably high activities of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Detection and partial sequence analysis of genes encoding the large subunits of methanol dehydrogenase (mxaF) and form I RubisCO (cbbL) provided genotypic evidence for methylotrophic autotrophy in B. mobilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号