首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of low pH (5.0 and 4.0) on lipid metabolism of caddisfly larvae Hydropsyche contubernalis L. (Trichoptera) was studied in 48 h toxicity experiments. The results were correlated with lipid composition of caddisfly larvae directly isolated from natural water. Phospholipids, cholesterol, mono-, di-, triacylglycerols, and fatty acids were detected by thin-layer and liquid chromatography. Minimal environmental changes were shown to initiate the biochemical adaptation mechanisms strengthening the cellular membranes through their condensation due to additional phospholipid and cholesterol synthesis. In the natural medium the adaptation processes are more active than in the artificial medium. More serious changes, such as pH decrease to 4.0, suppress the adaptation processes in the first medium and terminate them in the second one.  相似文献   

2.
Membrane lipids—phospholipids, fatty acids, and cholesterol—participate in thermal adaptation of ectotherms (bacteria, amphibians, reptiles, fishes) mainly via changes in membrane viscosity caused by the degree of fatty acids unsaturation, cholesterol/phospholipids ratio, and phospholipid composition. Studies of thermal adaptation of endotherms (mammals and birds) revealed the regulatory role of lipids in hibernation. Cholesterol and fatty acids participate in regulation of the parameters of torpor, gene expression, and activity of enzymes of lipid metabolism. Some changes in lipid metabolism during artificial and natural hypobiosis, namely, increased concentration of cholesterol and fatty acids in blood and decreased cholesterol concentration in neocortex, are analogous to those observed under stress conditions and coincide with mammalian nonspecific reactions to environmental agents. It is shown that the effects of artificial and natural hypobiosis on lipid composition of mammalian cell membranes are different. Changes in lipid composition cause changes in membrane morphology during mammalian hibernation. The effect of hypobiosis on lipid composition of membranes and cell organelles is specific and seems to be defined by the role of lipids in signaling systems. Comparative study of lipid metabolism in membranes and organelles during natural and artificial hypobiosis is promising for elucidation of adaptation of mammals to low ambient temperatures.  相似文献   

3.
A cholestane spin probe was used to study the effect of uncouplers of oxidative phosphorylation (2,4-dinitrophenol, pentachlorophenol and dicumarol) on the degree of organization of phospholipids in hydrated multibilayers. Disruptive effects were observed—their magnitude depending on pH, time and the presence of cholesterol. A correlation between changes in probe organization and ion conductivity, with maximum effects at the pH corresponding to the pK of the uncoupler, could be demonstrated in the films containing cholesterol. Egg lecithin films containing no cholesterol were disordered maximally at pH 4.0 irrespective of the uncoupler used. The effect of uncouplers on the probe disorganization varied with time after exposure. These time effects indicated that relative movement of uncoupler, probe and lipid molecules occur to produce lipid organizations differing from those after initial exposure to uncoupler. The results show that even in a simple model system uncoupler effects may be complex, and suggest that changes in bilayer lipid organization parameters may play a role in uncoupling oxidative phosphorylation.  相似文献   

4.
In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes.  相似文献   

5.
Cholesteryl esters (CE) are not generally abundant but are ubiquitous in living organisms and have markedly different properties from cholesterol because of their acyl chain. The miscibility/immiscibility of CE with biological lipid structures is a key property for their functions. In this work we study the solubility of cholesteryl oleate (ChO) in a model of the stratum corneum lipid matrix composed of ceramide C16, cholesterol and palmitic acid in excess water. Experiments were done in conditions of fully ionized (pH = 9.0) and fully neutralized fatty acid (pH = 4.0), and differential scanning calorimetry of the ternary mixtures with added ChO at pH = 9.0 clearly displayed a main transition with the same maximum temperature, peak shape, and enthalpy, suggesting that ChO was excluded from the remaining lipids. This technique is not conclusive at pH = 4.0 because the transitions of the lipid matrix and ChO overlap. The insolubility of ChO at both pH values is supported by X-ray diffraction. Adding the ceramide:cholesterol:fatty acid lipid mixture to ChO did not change the X-ray pattern of the mixture nor that of the ChO. To supplement the above physical techniques, we applied 13C MAS NMR spectroscopy with C-13 carbonyl-labeled ChO. A single 13C carbonyl peak from the ChO at 171.5 ppm was observed, indicating exposure to only one environment. The chemical shift was identical to pure ChO below and above the temperature of isotropic liquid formation. Taken together, our results lead to the conclusion that the solubility of ChO is negligible in the ceramide:cholesterol:fatty acid lipid mixture.  相似文献   

6.
Mesorhizobium huakuii strain LL56 and Mesorhizobium sp. strain LL22, which nodulate Lotus glaber, developed an adaptive acid response during exponential growth upon exposure to sublethal acid conditions. The adaptive acid response was found to be dependent on the sublethal pH and the strain intrinsic acid tolerance: the lowest adaptation pH was 4.0 for strain LL56 and 5.7 for strain LL22, and the lowest pH values tolerated after adaptation were 3.0 and 4.0, respectively. Both complex and minimal medium allowed the development of the adaptive acid response, although in complex medium this response was more effective. Three low molecular weight polypeptides (LMWPs) showed increased expression in strain LL56 during the adaptation to pH 4.0. However, the adaptive acid tolerance was only partially dependent on de novo protein synthesis, and constitutive systems may play a significant role on the acid tolerance of Mesorhizobium huakuii strain LL56.  相似文献   

7.
AIMS: The aim was to assess the induced thermotolerance under nonisothermal treatments of two strains of Staphylococcus aureus in media of different pH. METHODS AND RESULTS: Staphylococcus aureus ATCC 25923 was more heat resistant than S. aureus ATCC 13565 at any pH investigated under isothermal conditions. At pH 7.4, the D58 value of the resistant strain was approx. 30 times greater. Both strains showed a higher heat resistance at pH 4.0 than at pH 7.4. In contrast, under nonisothermal treatments (0.5-2 degrees C min(-1)), both strains were more heat resistant when treated at pH 7.4 than at pH 4.0 due to heat adaptation at the higher pH. At the slowest heating up rate tested at pH 7.4, the initially heat-sensitive strain nearly reached the thermotolerance of the heat-resistant strain. CONCLUSIONS: The induced thermotolerance under nonisothermal treatments depended on the treatment medium pH and the microbial strain tested. The induced thermotolerance in a sensitive strain can be greater than in a heat-resistant strain, showing similar resistance under nonisothermal conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This work shows data of interest about mechanisms of microbial resistance and adaptation to heat. Moreover, it contributes to the development of more adequate combined processes for food preservation.  相似文献   

8.
The effects of temperature change on phospholipid content in metacercariae of Posthodiplostomum minimum and their second intermediate hosts, Lepomis macrochirus, were examined to gauge similarities in the homeoviscous adaptation of host and parasite membranes to environmental thermal change. Heart, liver, and muscle tissues from individual L. macrochirus responded to environmental temperature declines with a decrease in the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC). Increases in membrane PE concentration increase membrane fluidity, maintaining fish membrane function as environmental temperature declines. However, the metacercariae of P. minimum exhibit changes in cholesterol levels, total lipid levels, and lipid composition (PE/PC) that contrast the normal changes for homeoviscous membrane adaptation exhibited by their fish intermediate hosts. The parasites seem to rely on their hosts for homeoviscous adaptation within normal developmental temperature ranges, pooling both cholesterol and PE as energetic stores for development and ontological transitions signaled by elevated temperatures.  相似文献   

9.
The changes in the structural and functional properties of yersinin, a porin from the outer membrane of Yersinia pseudotuberculosis, were studied in the pH range 8.0–2.0 using SDs-PAGE, scanning microcalorimetry, optical spectroscopy and bilayer lipid membrane technique. It was found that in the pH range under study the changes in the spatial structure of yersinin were biphasic. In the first steps of pH titration (pH 8.0–4.5), porin underwent a series of conformational transitions, which did not affect the trimeric structure of its molecule. In the second step (pH 4.0–2.0), structural rearrangements led to dissociation of the protein trimers into monomers. It is noteworthy that complete unfolding of the polypeptide chain of the protein was not observed even at low values of pH. Thus, at pH 2.0 the conformational intermediate of the protein retained up to 50% of its regular secondary structure. Studies of current fluctuations in the bilayer lipid membrane revealed that in weakly acidic media the conductivity of yersinin pores was decreased by one order of magnitude. The most drastic changes in the conductivity of the model membrane were observed at pH 5.8, whereas a further decrease of pH to 5.0 resulted in the closure of porin channels. It was concluded that the observed changes in the pore-forming properties of yersinin in a narrow range of pH represent an early step in the adaptation of bacteria to the changing conditions of the environment and entail control over the biosynthesis of nonspecific porins. The pH-dependent changes in the structure and pore-forming properties of yersinin provide additional evidence in favor of conformational and functional plasticity of porins.  相似文献   

10.
Owing to its distinct chemico-biological properties, chitosan, a cationic biopolymer, offers a great potential in multifarious bioapplications. One such application is as a dietary antilipidemic supplement to be used to reduce obesity/overweight and to lower cholesterol. The lipid-binding efficiency of chitosan, however, remains debatable. Accordingly, in this study we investigated the interactions of chitosan with selected lipids, cholesterol and fatty acids, the latter including saturated (stearic acid) and unsaturated (oleic, linoleic, alpha-linolenic) acids. The experiments were performed with the Langmuir monolayer technique, in which surface pressure-area isotherms were recorded for the lipid monolayers spread on the acetate buffer pH 4.0 subphase in the absence and presence of chitosan. We found that the presence of chitosan in the subphase strongly influenced the shape and location of the isotherms, proving that there existed attractions between chitosan and lipid molecules. The attractions were revealed by changes of the molecular organization of the monolayers. The common feature of these changes was that all the monolayers studied underwent expansion, in each case reaching saturation with increasing chitosan concentration. In agreement with the lipid molecular structures, the highest expansions were observed for the most unsaturated fatty acids, linoleic and alpha-linolenic, the lowest for stearic acid, with oleic acid and cholesterol being the intermediate cases. By contrast, the main distinguishing feature of these changes was that, although none of the monolayers studied changed its state when completely saturated with chitosan, compared to the parent ones the compactness of the monolayers was modified. The solid monolayers of stearic acid and cholesterol were loosened, whereas those of all the unsaturated acids, liquid in nature, were tightened. On the basis of these results we tentatively propose a mechanism of the chitosan action that includes both electrostatic and hydrophobic lipid-chitosan interactions as well as hydrogen bonding between them.  相似文献   

11.
The manufacture of enveloped virus, particularly retroviral (RV) and lentiviral (LV) vectors, faces the challenge of low titers that are aggravated under serum deprivation culture conditions. Also, the scarce knowledge on the biochemical pathways related with virus production is still limiting the design of rational strategies for improved production yields. This work describes the adaptation to serum deprivation of two human RV packaging cell lines, 293 FLEX and Te Fly and its effects on lipid biosynthetic pathways and infectious vector production. Total lipid content as well as cellular cholesterol were quantified and lipid biosynthesis was assessed by (13)C-NMR spectroscopy; changes in gene expression of lipid biosynthetic enzymes were also evaluated. The effects of adaptation to serum deprivation in lipid biosynthesis were cell line specific and directly correlated with infectious virus titers: 293 FLEX cells faced severe lipid starvation-up to 50% reduction in total lipid content-along with a 68-fold reduction in infectious vector titers; contrarily, Te Fly cells were able to maintain identical levels of total lipid content by rising de novo lipid biosynthesis, particularly for cholesterol-50-fold increase-with the consequent recovery of infectious vector productivities. Gene expression analysis of lipid biosynthetic enzymes further confirmed cholesterol production pathway to be prominently up-regulated under serum deprivation conditions for Te Fly cells, providing a genotype-phenotype validation for enhanced cholesterol synthesis. These results highlight lipid metabolism dynamics and the ability to activate lipid biosynthesis under serum deprivation as an important feature for high retroviral titers. Mechanisms underlying virus production and its relationship with lipid biosynthesis, with special focus on cholesterol, are discussed as potential targets for cellular metabolic engineering.  相似文献   

12.
The effects on the lipid status of developing embryos of a disturbed natural ratio of cations in water as a result of the pollution of water bodies by waste with a high potassium content (130–140 mg/l) were studied in the laboratory. The results obtained confirm the indication of reduced lipid synthesis and altered formation of phospholipids in embryos developing in a medium with a disturbed natural ratio of cations. In addition, the lysophospholipid fraction increased in these embryos, which indicates activation of phospholipid hydrolysis. It was also found that changes in the salt regime lead to a decreased content of cholesterol, the main membrane thickener. It was proposed that the changes discovered lead to disturbed stability and permeability of the membranes of fish eggs, with the subsequent death of embryos.  相似文献   

13.
The effects on the lipid status of developing embryos of a disturbed natural ratio of cations in water as a result of the pollution of water bodies by waste with a high potassium content (130-140 mg/I) were studied in the laboratory. The results obtained confirm the indication of reduced lipid synthesis and altered formation of phospholipids in embryos developing in a medium with a disturbed natural ratio of cations. In addition, the lysophospholipid fraction increased in these embryos, which indicates activation of phospholipid hydrolysis. It was also found that changes in the salt regime lead to a decreased content of cholesterol, the main membrane thickener. It was proposed that the changes discovered lead to disturbed stability and permeability of the membranes of fish eggs, with the subsequent death of embryos.  相似文献   

14.
Mixtures of ceramides with other lipids in the presence of water are key components of the structure of the lipid matrix of the stratum corneum and are involved in lateral phase separation processes occurring in lipid membranes. Besides their structural role, ceramides are functional for cell signaling and trafficking. We elected, as our object of study, a mixture of N-hexadecanoylceroyl-d-erythro-sphyngosine, C16-Cer, with cholesterol, Ch, in a molar proportion 54:46 in excess water to which palmitic acid, PA, is added in varying amounts. The chosen C16-Cer:Ch proportion replicates the relative abundance of ceramides and cholesterol found in the stratum corneum lipid matrix. For each lipidic composition, we identify the phases in equilibrium and study the thermotropism of the system, using differential scanning calorimetry and temperature-dependent small and wide-angle X-ray powder diffraction. Since the molecular aggregation of the system and its mesoscopic properties are affected by the degree of protonation of the PA, we explore mixtures with several PA contents at two extreme pH values, 9.0 and 4.0. A specific C16-Cer:Ch:PA composition forms at pH 9.0 a lamellar crystalline aggregate, to which we attribute the stoichiometry C16-Cer5Ch4PA2, that melts at 88–90 °C to give a HII phase. For pH values at which there is partial or total protonation of PA another LC C16-Cer:Ch (2:3) stoichiometric aggregate is observed, identical to that previously reported for C16-Cer:Ch mixtures (Souza et al., 2009, J. Phys. Chem. B, 113, 1367–1375), coexisting with a lamellar fluid phase. For pH 4.0 and 7.0, the existing lamellar liquid crystalline converts into a isotropic fluid phase at high temperatures. It is also found that the miscibility of PA in the C16-Cer:Ch mixture at pH 4.0 does not exceed ca. 18 mol%, but for pH 9.0 no free PA is detected at least until 60 mol%.  相似文献   

15.
We develop a hypothesis of lipid transport in blood which differs significantly from commonly used one. In any organism hydrophobic substances transport in aqueous medium functions on the base of the some principles. Hence: (a) lipoproteins transport mainly fatty acids; (b) lopoprotein structure are based on the protein chemistry principles; (c) all lipiproteins are build up according to a single principle and are bilayers--protein: lipid; (d) apolipoprotein is a protein which binds one lipid class, determines the peculiarities of structure and function of transporting macromolecule and disturbs fatty acids transport in blood at inherent synthesis absence or change of apoprotein primary structure; (e) only fatty acids and all their derivatives are lipids. Thus cholesterol being an alcohol is nor a lipid, but cholesrteryl esters with fatty acids are complicated lipids. Thus triacylycerides in blood are the transporting form of saturated fatty acids, but phospholipids--the transporting form of polyenic fatty acids. High density lipoproteins transfer fatty acids in polar esters only, but apoB macromolecules--only in nonpolar. At first, cholesterol is a factor of short-time adaptation to medium change. At second, cholesterol provides active transport of polyenoic fatty acids to cell forming functional circulation of cholesterol. Blood cholesterol is the test of cell deficiency of polyenoic omega-3 fatty acids.  相似文献   

16.
The effect of adaptation to saline growth of a fresh water cyanobacterium Synechococcus 6311 on components of the cytoplasmic membranes and thylakoids was investigated. Significant changes in membrane surface charge, lipid, fatty acid, and carotenoid composition were observed upon transfer of the cells from a low salt (0.015 M NaCl) to a high salt (0.50 M NaCl) growth medium. Very similar changes in the polar lipid classes and fatty acid composition were observed in both membranes, but changes in fluidity and surface charge and a significant shift in the protein to lipid ratio were only apparent in the cytoplasmic membranes. The fluidity and surface charge data correlate well with functional studies and we can attribute the cytoplasmic membrane as the major site of interaction and adaptation to the saline environment.  相似文献   

17.
The effects of pH on the membrane fluidity of intact human erythrocytes, ghosts, and their lipid vesicles were studied by spin label techniques in the range of pH 3.0 to 9.1. Two fatty acid spin labels, 5-nitroxide stearic acid (5NS) and 12-nitroxide stearic acid (12NS), and a maleimide spin label were used for the labeling of the membrane lipids and proteins, respectively. The outer hyperfine splitting (T parallel) was measured as a parameter of membrane fluidity. In the case of 5NS, the T parallel values for intact erythrocytes and ghosts remained almost constant over the entire pH range at 22 degrees C but those for their lipid vesicles changed slightly, indicating the vertical displacement of the labels in lipid bilayers. On the other hand, the ESR spectra of 12NS incorporated into intact erythrocytes and ghosts, as compared with their lipid vesicles, showed marked pH dependence. By means of spin labeling of membrane proteins, the conformational changes of the proteins were observed in the pH range mentioned above. These results suggest a possible association between the strong pH dependence of the T parallel values and the conformation changes of membrane proteins. The pH dependence of the membrane fluidity was also investigated in cholesterol-enriched and -depleted erythrocytes. The effects of cholesterol demonstrated that the membrane fluidity was significantly mediated by cholesterol at low pH, but not at high pH.  相似文献   

18.
Role of lipids and fatty acids (FA) in littoral and sublittoral White Sea mussels Mytilus edulis L. was studied at various stages of reproductive cycle in the phenotypic adaptation (acclimation) to changes of the sea water salinity. The obtained data indicate differences in the mussel lipid and fatty acid spectra, which are connected both with their location (littoral or sublittoral) and with the spawning period stage (3b—release of gametes or 3c—resorption of residual sex products). Lipids and FA of both mussel groups respond to the salinity changes to the greater degree at the 3b than at the 3c stage. In the littoral mussels at the 3b and 3c stages there were revealed differently directed changes in the content of membrane lipid—cholesterol—and in the cholesterol: phospholipids ratio. In the sublittoral mussels that are less adapted to extreme action of abiotic factors, more significant changes were found in the lipid and FA compositions.  相似文献   

19.
P M Weers  C M Kay  R O Ryan 《Biochemistry》2001,40(25):7754-7760
Locusta migratoria apolipophorin III (apoLp-III) is a helix bundle exchangeable apolipoprotein that reversibly binds to lipoprotein surfaces. Structural reorganization of its five amphipathic alpha-helices enables the transition from the lipid-free to lipid-bound state. ApoLp-III-induced transformation of dimyristoylphosphatidylcholine (DMPC) bilayer vesicles into smaller discoidal complexes is enhanced as a function of decreasing pH, with maximal transformation occurring at pH 3.5. Over the entire pH range studied, apoLp-III retains nearly all of its secondary structure content. Whereas no changes in fluorescence emission maximum of the two Trp residues in apoLp-III were observed in the pH range from 7.0 to 4.0, a further decrease in pH resulted in a strong red shift. Near-UV circular dichroism spectra of apoLp-III showed well-defined extrema (at 286 and 292 nm) between pH 7.0 and pH 4.0, which were attributed to Trp115. Below pH 4.0, these extrema collapsed, indicating a less rigid environment for Trp115. Similarly, the fluorescence intensity of 8-anilinonaphthalene-1-sulfonate in the presence of apoLp-III increased 4-fold below pH 4.0, indicating exposure of hydrophobic sites in the protein in this pH range. Taken together, the data suggest two conformational states of the protein. In the first state between pH 7.0 and pH 4.0, apoLp-III retains a nativelike helix bundle structure. The second state, found between pH 3.0 and pH 4.0, is reminiscent of a molten globule, wherein tertiary structure contacts are disrupted without a significant loss of secondary structure content. In both states DMPC vesicle transformation is enhanced by lowering the solution pH, reaching an optimum in the second state. The correlation between tertiary structure and lipid binding activity suggests that helix bundle organization is a determinant of apoLp-III lipid binding activity.  相似文献   

20.
Embryogenic cultures of pumpkin (Cucurbita pepo L.) were initiated from mechanically wounded mature zygotic embryos on 2,4-D-containing MS medium, and on hormone-free, semisolid modified MS medium containing NH4Cl as the sole source of nitrogen. The habituated line was derived from the embryogenic tissue induced with 2,4-D and maintained on medium without growth regulators. Sustained subculturing of the three embryogenic lines on a medium with NH4Cl as the sole source of nitrogen enabled the establishment of highly uniform cultures in which no further development into mature embryo stages occurred. The tissue consisting of proembryogenic globules or globular stage embryos was maintained, without decline, for over six years. Globular embryos proceeded to maturity when a combination of reduced (NH4) and unreduced (NO3) forms of nitrogen was provided in the medium. Different nitrogen sources in the medium caused changes of medium pH during subculture in the pH range of 4.0-6.5. The tissue growth and embryo development were blocked on medium with pH adjusted and stabilized at 4.0 or at 3.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号