首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of mutant Chinese hamster ovary (CHO) cell lines resistant to the cytotoxic action of alpha-amanitin have been isolated. The alpha-amanitin sensitivity of the different mutant cell lines varied widely, but correlated well with the alpha-amanitin sensitivity of the RNA polymerase II activity in each of these mutant cell lines. In comparison with the RNA polymerase II of wild-type cells, three mutants, Ama39, Ama6, and Amal, required respectively 2- to 3-fold, 8- to 10-fold, and about 800-fold higher concentrations of alpha-amanitin for inhibition of their polymerase II activity. Determination of the equilibrium dissociation constants (KD) for complexes between 0-[3H]methyl-demethyl-gamma-amanitin and RNA polymearse II indicated that differences in alpha-amanitin sensitivity were reflected in differences in the ability of the enzymes to bind amanitin. Hybrids formed by fusion of mutants with cells of wild-type sensitivity contained both mutant and wild-type polymerase II activities. Thus, each of the different alpha-amanitin resistance mutations was expressed co-dominantly. A test for complementation between two of these mutations by measurement of both the alpha-amanitin sensitivity and the [3H]amanitin binding by RNA polymerase II in Ama6 X Amal hybrid cells did not reveal any wild-type RNA polymerase II activity. These data provide evidence that the mutation to alpha-amanitin resistance involves structural changes in the gene coding for the alpha-amanitin binding subunit of RNA polymerase II. These changes appear to account for the alpha-amanitin-resistant phenotypes of these mutant cells.  相似文献   

2.
alpha-Amanitin-resistant vaccinia virus mutants were isolated after serial viral passages in BSC-40 cells that were carried out in the presence of inhibitory levels (6 micrograms/ml) of alpha-amanitin. One such mutant, alpha-27, was highly refractory (greater than 95%) to alpha-amanitin-mediated inhibition and was selected for further study. In the absence of drug, the phenotypes of alpha-27 and wild-type vaccinia virus were indistinguishable with respect to growth kinetics. DNA synthesis, protein synthesis, and morphogenesis. Infections in the presence of alpha-amanitin revealed two striking differences, however. First, wild-type virus was unable to catalyze proteolytic processing of the two major capsid proteins VP62 and VP60, whereas alpha-27 was most efficient at this process. Second, wild-type viral morphogenesis within the infected cells was arrested by alpha-amanitin at an apparently analogous step to that previously described for enucleated cells. This observation was supported by the ability of alpha-27 virus to replicate in enucleated BSC-40 cells. Restriction enzyme analyses of alpha-27 versus wild-type genomes revealed that a XhoI cleavage site was altered in the alpha-27 DNA molecule, suggesting a possible location for the alpha-amanitin resistance locus.  相似文献   

3.
Alpha-amanitin-resistant D. melanogaster with an altered RNA polymerase II.   总被引:18,自引:0,他引:18  
Following EMS mutagenesis we recovered a mutant of D. melanogaster that grows at concentrations of alpha-amanitin lethal to wild-type. To our knowledge this mutant represents the first example of an amanitin-resistant eucaryotic organism. The amanitin resistance of the mutant (AmaC4) is due to an alteration in its DNA-dependent RNA polymerase II, which is approximately 250 times less sensitive to inhibition by amanitin than the wild-type polymerase II whether tested in nuclei, in partially-fractionated extracts or as a highly purified enzyme. While the wild-type enzyme activity is inhibited 50% by 2.1 x 10(-8) M alpha-amanitin, inhibition of 50% of the AmaC4 RNA polymerase II activity requires a toxin concentration of 5.6 x 10(-6) M. The mutation responsible for the amanitin resistance of AmaC4 is on the X chromosome near the vermillion locus.  相似文献   

4.
Michel Caboche 《Genetics》1974,77(2):309-322
5-bromodeoxyuridine resistance mutations induced by mutagenesis were studied. The average expression time for induced mutations varied with the concentration of the mutagen ethyl methanesulfonate (EMS). However, a constant number of two generation times was necessary for half maximal expression of induced mutations. Also, induced mutation rates were compared under optimal expression conditions for bromodeoxyuridine, fluorodeoxyuridine and azaguanine resistance markers. Ten independent bromodeoxy-uridine-resistant clones were tested for reversion. Two clones reverted-one spontaneously and the other after mutagenesis. The spontaneous rate of mutation to bromodeoxyuridine resistance, estimated by the fluctuation test, was high in revertant clones (4 x 10(-6) / cell / generation) and low in the wild-type cells (< 3.5 x 10(-8) / cell / generation). A comparison of induced mutation frequencies at variable EMS concentrations showed a single-hit curve for revertant clones and a multihit curve for the wild-type cells. Thymidine kinase activities of resistant clones were usually less than 2% of that of the wild-type clone. Inducibility, thermal stability and intracellular localization of the thymidine kinases of the wild-type cells and of a revertant clone were identical. A low, but significant (P < 0.10), Km discrepancy was observed between enzyme extracts of these lines. The genetic implications of these results are discussed.  相似文献   

5.
RNA polymerase II is inhibited by the mushroom toxin alpha-amanitin. A mouse BALB/c 3T3 cell line was selected for resistance to alpha-amanitin and characterized in detail. This cell line, designated A21, was heterozygous, possessing both amanitin-sensitive and -resistant forms of RNA polymerase II; the mutant form was 500 times more resistant to alpha-amanitin than the sensitive form. By using the wild-type mouse RNA polymerase II largest subunit (RPII215) gene (J.A. Ahearn, M.S. Bartolomei, M. L. West, and J. L. Corden, submitted for publication) as the probe, RPII215 genes were isolated from an A21 genomic DNA library. The mutant allele was identified by its ability to transfer amanitin resistance in a transfection assay. Genomic reconstructions between mutant and wild-type alleles localized the mutation to a 450-base-pair fragment that included parts of exons 14 and 15. This fragment was sequenced and compared with the wild-type sequence; a single AT-to-GC transition was detected at nucleotide 6819, corresponding to an asparagine-to-aspartate substitution at amino acid 793 of the predicted protein sequence. Knowledge of the position of the A21 mutation should facilitate the study of the mechanism of alpha-amanitin resistance. Furthermore, the A21 gene will be useful for studying the phenotype of site-directed mutations in the RPII215 gene.  相似文献   

6.
Malignancy and anchorage independence of Djungarian hamster tumor cell lines resistant to different doses (0.1-5.0 micrograms/ml) of colchicine were studied. The clones with low colchicine resistance (15-20-fold) did not differ in tumorigenicity from parental cells. The TD50 for highly colchicine-resistant cells (200-800-fold) was several orders of magnitude higher than that for wild-type cells. Colchicine resistance did not affect the expression of the cells anchorage independence. The cloning efficiency in a semi-solid medium was the same both for colchicine-resistant cell lines and wild-type cells.  相似文献   

7.
Oligomycin-resistant clones were isolated from Chinese hamster ovary cells by treatment of cells with ethidium bromide, followed by mutagenesis with ethylmethane sulfonate and selection in oligomycin. One clone (Olir 8.1) was chosen for further study. Olir 8.1 cells grow with doubling time similar to that of wild-type cells, whether grown in the presence or absence of drug (doubling time of 13-14 h). In plating efficiency experiments, Olir 8.1 cells are approximately 100-fold more resistant to oligomycin than are wild-type cells. There is approximately a 32-fold increase in the resistance to inhibition by oligomycin of the mitochondrial ATPase from Olir 8.1 cells. The electron transport chain is functional in Olir 8.1 cells. Oligomycin resistance is stable in the absence of selective pressure. There is little or no cross-resistance of Olir 8.1 cells to venturicidin and dicyclohexylcarbodiimide, other inhibitors of the mitochondrial ATPase, or to chloramphenicol, an inhibitor of mitochondrial protein synthesis. Oligomycin resistance is dominant in hybrids between Olir 8.1 cells and wild-type cells. Fusions of enucleated Olir 8.1 cells with sensitive cells and characterization of the resulting "cybrid" clones indicates that oligomycin resistance in Olir 8.1 cells is cytoplasmically inherited.  相似文献   

8.
Alpha-amanitin resistance: a dominant mutation in CHO cells.   总被引:4,自引:0,他引:4  
P E Lobban  L Siminovitch 《Cell》1975,4(2):167-172
Hybrids of CHO cells were constructed consisting of either a 1:1 or 1:2 ratio of alpha-amanitin-resistant and sensitive cells, respectively. The resistance of such hybrids to killing by the drug was similar but slightly less than that of the resistant parent. The hybrids contained both resistant and wild-type RNA polymerase II, in amounts related to the expected gene dosage. The alpha-amanitin marker therefore is expressed codominantly.  相似文献   

9.
The properties of a new type of oligomycin-resistant Chinese hamster ovary (CHO) cell line (Olir 2.2) are described in this paper. Olir 2.2 cells were approximately 50,000-fold more resistant to oligomycin than were wild-type CHO cells when tested in glucose-containing medium, but only 10- to 100-fold more resistant when tested in galactose-containing medium. Olir 2.2 cells grew with a doubling time similar to that of wild-type cells both in the presence or absence of oligomycin. Oligomycin resistance in Olir 2.2 cells was stable in the absence of drug. In vitro assays indicated that there was approximately a 25-fold increase in the resistance of the mitochondrial ATPase to inhibition by oligomycin in Olir 2.2 cells, with little change in the total ATPase activity. The electron transport chain was shown to be functional in Olir 2.2 cells. Olir 2.2 cells were cross-resistant to other inhibitors of the mitochondrial ATPase (such as rutamycin, ossamycin, peliomycin, venturicidin, leucinostatin, and efrapeptin) and to other inhibitors of mitochondrial functions (such as chloramphenicol, rotenone, and antimycin). Oligomycin resistance was expressed codominantly in hybrids between Olir 2.2 cells and wild-type cells. Cross-resistance to ossamycin, peliomycin, chloramphenicol, antimycin, venturicidin, leucinostatin, and efrapeptin was also expressed codominantly in hybrids. Fusions of enucleated Olir 2.2 cells with wild-type cells and characterization of the resulting cybrid clones indicated that resistance to oligomycin and ossamycin results from a mutation in both a nuclear gene and a cytoplasmic gene. Cross-resistance to efrapeptin, leucinostatin, venturicidin, and antimycin results from a mutation in only a nuclear gene.  相似文献   

10.
The induction and selection of valine-resistant mutants from haploid tobacco (Nicotiana tabacum L.) mesophyll protoplast-derived cells have been studied. Using cells from an original mutant plant obtained previously, we performed reconstruction experiments in order to determine the best conditions for the recovery of resistant cells among a population of sensitive cells. Optimal selective conditions were shown to depend on various factors including cell density, time of addition of valine and seasonal variations affecting the mother plants.-Using cell densities of approximately 10( 4) cells/ml, we defined efficient selective conditions: more than 25% of the putative mutant clones selected from UV-mutagenized protoplasts were reproducibly confirmed to be valine resistant. Further characterization of some regenerated mutant plants indicated that valine-resistance was associated with an uptake deficiency, as in the case of the original mutant plant of the Val(r)-2 line used for reconstruction experiments. Spontaneous mutation rates for valine-resistance were below accurately detectable levels, i.e., less than 10(-6) per cell per generation. Induced mutation frequency varied nonlinearily with UV dose from 10(-5) to 5 x 10(-4) resistant clones per surviving colony. Two independent loci (vr2 and vr3) were previously shown to be involved in valine-resistance due to amino acid uptake deficiency. Haploid tobacco plants were produced through anther culture from an F(1) double-heterozygous plant obtained from a cross between the original mutant plant and a wild-type plant. Study of the level of resistance to valine of protoplast-derived cells allowed the classification of these haploid plants in four types: sensitive, resistant and two intermediary resistant types believed to result from the presence of a mutant allele at only one of the two loci involved. The frequencies of UV-induced mutations in cells derived from haploid plants of one of the intermediary types were compared to those observed in wild-type cells. The results are considered in light of the amphidiploid structure of the tobacco genome.  相似文献   

11.
Cultures of the rat skeletal muscle myoblast cell line, L6, were treated with the mutagen ethylmethanesulfonate and grown in the presence of alpha-amanitin, an inhibitor of RNA polymerase II in vitro. One clonal cell line, Ama102, resistant tc the cytotoxic action of 2 mu-g/ml of alpha-amanitin was isolated and extensively characterized. Ama102 cells were about 30-fold more resistant to alpha-amanitin than their Ama+ parent cells based on a comparison of the concentration of alpha-amanitin required to reduce their plating efficiencies to similar extents. The RNA polymerase activities from Ama+ and Ama102 cells were solubilized and separated by DEAE-Sephadex chromatography. Whereas all of the Ama+ RNA polymerase II activity was inhibited by 0.1 mu-g/ml of alpha-amanitin, about 30% of the activity in the Ama102 RNA polymerase II peak was resistant to this concentration of alpha-amanitin and was inhibited only by much higher concentrations (25 mu-g/ml) of alpha-amanitin. This alpha-amanitin-resistant activity in Ama102 cells was identified as a bona fide RNA polymerase II by its chromatographic behavior on DEAE-Sephadex, salt optimum, preference for denatured DNA as template, insensitivity to inhibition by potassium phosphate, thermal inactivation kinetics, and inactivation by anti-RNA polymerase II antiserum. Both RNA polymerase IIa and IIb from Ama102 cells exhibited the partial alpha-amanitin resistance, as did this activity when purified further on phosphocellusose. Unlike the parental Ama+ cells, Ama102 cells neither fused at confluence nor showed an increase in the specific activity of creatine kinase. The altered sensitivity of the Ama102 RNA polymerase II to alpha-amanitin appears to account for the drug-resistant phenotype of these cells.  相似文献   

12.
13.
Summary A chlorophyll-deficient mutant line of tobacco (Nicotiana tabacum), named tl, displays spontaneously on leaves green, white, and twinned green/white somatic variations at high frequencies (10–3 to 10–2). The frequency of cell events leading to the somatic variations has been shown to be closely dependent on the stage of differentiation of cells during plant development. The activity of transposable elements is suspected in the tl genotype, and a study of its mutagenic ability was performed by selecting in vitro new mutant cellular types. The cellular marker chosen was the resistance to toxic doses of valine conferred by a permeation deficiency. A reproducible method allowing efficient selection of valine-resistant mutant clones from haploid tobacco mesophyll protoplast-derived cells was used. In 10 out of 12 experiments, the frequency of spontaneous valine-resistant clones obtained with the wild-type control was null for cell populations tested to the 106. On the other hand, spontaneous valine-resistant clones were repeatedly isolated at variable and sometimes high frequencies (greater than 10–3) from cell populations of the tl type. Valine resistance of plants regenerated from these clones was transmitted to the progeny as a single monogenic mutation. These results indicate an increased mutagenic ability of the tl genotype, as compared to the wild-type line.  相似文献   

14.
Spontaneous and EMS-induced alpha-amanitin-resistant Aedes albopictus cells have been isolated and characterized. Two mutant sublines, one of intermediate resistance (alpha A2) and the other highly resistant (Ama18) contained RNA polymerase II activity, the resistance of which in vitro to alpha-amanitin correlated well with the resistance of these cells in vivo. The resistance of these cells to alpha-amanitin can likely be attributed to the presence of an altered RNA polymerase II.  相似文献   

15.
Five clones of mouse neuroblastoma cells able to grow in hypoxanthine-aminopterin-thymidine containing medium were isolated from a hypoxanthine-guanine phosphoribosyltransferase (HGPRT; EC 2.4.2.8; IMP: pyrophosphate phosphoribosyltransferase) deficient cell line. These hypoxanthine-aminopterin-thymidine resistant revertant clone had 45-55% of wild-type cell HGPRT activity. Kinetic studies indicated that the HGPRT in revertant clones had a reduced maximal velocity as compared to wild type cells based on cell protein. Apparent Km values of HGPRT for hypoxanthine and 5-phosphoribosyl-1-pyrophosphate were similar in wild-type and revertant cells. Heat inactivation studies demonstrated a similar heat lability for HGPRT in revertant and wild-type cells. An antibody fraction prepared from serum of rabbits immunized with HGPRT partially purified from mouse liver was used to measure the amount of cross-reacting material in normal and revertant clones. The revertant clones had one-half the amounth of cross-reacting material present in wild-type cells, based on a given amount of cell protein. These data indicate that the revertant cells may contain fewer HGPRT molecules with unaltered catalytic activity.  相似文献   

16.
Metaphase chromosomes purified from a hydroxyurea-resistant Chinese hamster cell line were able to transform recipient wild-type cells to hydroxyurea resistance at a frequency of 10(-6). Approximately 60% of the resulting transformant clones gradually lost hydroxyurea resistance when cultivated for prolonged periods in the absence of drug. One transformant was subjected to serial selection in higher concentrations of hydroxyurea. The five cell lines generated exhibited increasing relative plating efficiency in the presence of the drug and a corresponding elevation in their cellular content of ribonucleotide reductase. The most resistant cell line had a 163-fold increase in relative plating efficiency and a 120-fold increase in enzyme activity when compared with the wild-type cell line. The highly hydroxyurea-resistant cell lines had strong electron paramagnetic resonance signals characteristic of an elevated level of the free radical present in the M2 subunit of ribonucleotide reductase. Two-dimensional electrophoresis of cell-free extracts from one of the resistant cell lines indicated that a 53,000-dalton protein was present in greatly elevated quantities when compared with the wild-type cell line. These data suggest that the hydroxyurea-resistant cell lines may contain an amplification of the gene for the M2 subunit of ribonucleotide reductase.  相似文献   

17.
Caspases play important roles in the initiation and progression of apoptosis. In experimental models of ATP depletion, we have demonstrated the activation of caspase-9, -8, and -3, which is followed by the development of apoptotic morphology. To determine the specific contribution of caspase-9 to ATP depletion-induced apoptosis, we transfected renal epithelial cells with its endogenous dominant-negative inhibitor caspase-9S. Two cell clones with stable transfection were obtained. These clones expressed caspase-9S, and the cytosol isolated from these cells was resistant to cytochrome c-induced caspase activation in vitro. The clones were then examined for ATP depletion-induced apoptosis. Compared with the wild-type cells, the caspase-9S clones were markedly resistant to apoptosis in this model. Caspase activation was also inhibited. Surprisingly, these clones also showed significantly less cytochrome c release during ATP-depletion. Moreover, Bax translocation to mitochondria was inhibited, suggesting that these clones were resistant to apoptosis not only at the cytosolic caspase activation level but also at the upstream mitochondrial level. To gain insights into the mitochondrial resistance, we analyzed the expression of Bcl-2 family proteins. While the expression of Bax, Bak, and Bcl-2 was comparable to the wild-type cells, the selected clones showed specific up-regulation of Bcl-XL, an anti-apoptotic protein. We conclude that the selected clones were resistant to apoptosis at two levels. In the cytosol, they expressed dominant negative caspase-9, and at the mitochondria they up-regulated Bcl-XL.  相似文献   

18.
Derivation of Tk- Clones from Revertant Tk+ Mammalian Cells   总被引:9,自引:1,他引:8  
D. J. Roufa  B. N. Sadow    C. T. Caskey 《Genetics》1973,75(3):515-530
In order to obtain a large collection of Chinese hamster cell clones defective in thymidine kinase (TK(-)), BrdU(r) selection experiments have been performed on wild-type and revertant TK(+) cell lines. No clones (< 10(-9)) were obtained from the wild-type TK(+) cell line by single-step selection. In contrast, revertant TK(+) clones readily gave rise to stable TK(-) derivatives (1 - 2 x 10(-4)). Both wild-type and revertant TK(+) clones spontaneously yielded 8-AG(r) colonies with the same frequency (1 - 5 x 10(-6)), suggesting that the differences between wild-type and revertant cell lines specifically affected selection of the TK(-) phenotype. The increased frequency of TK(-) clones reflects perhaps the number (ploidy) or character of the autosomal TK loci in TK(+) revertants, or perhaps the mechanisms which regulate expression of the TK genes. Several mutagens, EMS, MNNG and UV, stimulated the TK(+) revertants' frequency of TK(-) subclones only slightly (< 3-fold). Biochemical and genetic data indicated that the TK(-) clones derived from one revertant are phenotypically different. The phenotypes displayed by these cell lines are stable and do not depend upon the continued presence of the selective agent.  相似文献   

19.
P Stanley  L Siminovitch 《In vitro》1976,12(3):208-215
Chinese hamster ovary (CHO) cells selected in a single step for resistance to the cytotoxicity of the lectin from red kidney beans (PHA) behave as authentic somatic cell mutants. The PHA-resistant (Phar) phenotype is stable in the absence of selection; its frequency in a sensitive-population is increased several-fold by mutagenesis; and it behaves recessively in somatic cell hybrids. The activity of a specific glycosyl transferase which transfers N-acetylglucosamine (GlcNAc) to terminal alpha-mannose residues is dramatically reduced (less than or equal to 5% of the activity detected in wild-type CHO cells) in several independent PhaR clones. These clones also exhibit (a) a decreased ability to bind [125I]-PHA; (b) a marked resistance to the cytotoxicity of wheat germ agglutinin (WGA), Ricin (RIC) and Lens culinaris agglutinin (LCA); (c) a 4- to 5-fold increased sensitivity to the cytoxocity of concanavalin A (Con A); (d) an increased ability to bind 125I-Con A; and (e) decreased surface galactose residues - all properties consistent with the specific loss of the GlcNAc transferase activity. The lectins WGA, RIC, LCA and Con A have also been used to select, in a single step, resistance closes from each of two complementary CHO auxitrophic lines. These lectin-resistant clones have been characterized by their ability to survive cytotoxic doses of PHA, Con A, WGA, RIC, or LCA, and 4-5 "lectin-resistance" phenotypes have been demonstrated. Complementation data is being sought by somatic cell hybridization. Preliminary results show that two phenotypically-distinct Con AR mutants are complementary in that hybrid cells formed between them exhibit wild-type sensitivity to Con A.  相似文献   

20.
Resistant variants were selected in vitro against two novel nucleoside analogues, (+) dOTC and (-) dOTFC using the HIV-1 molecular clone HXB2D. The variants obtained displayed 6.5-fold and 10-fold resistance to these compounds, respectively. Cloning and sequencing of the RT genes of the selected viruses identified two mutations, M184I for (+) dOTC and M184V for (-) dOTFC. Results with mutated recombinant clones of HXB2D confirmed the importance of these mutations in MT-4 cells. The resistance profiles of clinical samples with wild-type or 3TC-resistant phenotypes were also studied; low to moderate levels of cross-resistance were observed against the novel compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号