首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundGas Permeable Rapid Expansion (G-Rex) bioreactors have been shown to efficiently expand immune cells intended for therapeutic use, but do not address the complexity of the viral transduction step required for many engineered T-cell products. Here we demonstrate a novel method for transduction of activated T cells with Vectofusin-1 reagent. Transduction is accomplished in suspension, in G-Rex bioreactors. The simplified transduction step is integrated into a streamlined process that uses a single bioreactor with limited operator intervention.MethodsPeripheral blood mononuclear cells (PBMCs) from healthy donors were thawed, washed and activated with soluble anti-CD3 and anti-CD28 antibodies either in cell culture bags or in G-Rex bioreactors. Cells were cultured in TexMACS GMP medium with interleukin (IL)-7 and IL-15 and transduced with RetroNectin in bags or Vectorfusin-1 in the G-Rex. Total viable cell number, fold expansion, viability, transduction efficiency, phenotype and function were compared between the two processes.ResultsThe simplified process uses a single vessel from activation through harvest and achieves 56% transduction with 29-fold expansion in 11 days. The cells generated in the simplified process do not differ from cells produced in the conventional bag-based process functionally or phenotypically.DiscussionThis study demonstrates that T cells can be transduced in suspension. Further, the conventional method of generating engineered T cells in bags for clinical use can be streamlined to a much simpler, less-expensive process without compromising the quality or function of the cell product.  相似文献   

2.
One simple but efficient carbon-supplying device was designed and developed, and the correlative carbon-supplying technology was described. The absorbing characterization of this device was studied. The carbon-supplying system proved to be economical for large-scale cultivation of Spirulina sp. in an outdoor raceway pond, and the gaseous carbon dioxide absorptivity was enhanced above 78%, which could reduce the production cost greatly.  相似文献   

3.
Background aimsImmunotherapy with allodepleted donor T cells improves immunity after T cell-depleted hematopoietic stem cell transplantation. We developed a methodology for selective depletion of alloreactive T cells after activation with host antigen-presenting cells by targeting T cells up-regulating CD25 and CD71. Combined depletion of these cells yields a pool of allodepleted donor T cells with antiviral properties with minimal capacity to cause graft-versus-host disease.MethodsMature dendritic cells were irradiated and used to stimulate donor peripheral blood mononuclear cells for 4 days. The co-culture was stained with anti-CD71-biotin followed by CliniMACS CD25 and Anti-Biotin Reagents (Miltenyi Biotec GmbH; Bergisch Gladbach, Germany) before depletion on the CliniMACS Plus (Miltenyi Biotec GmbH). Residual alloreactivity was tested by flow cytometry, a secondary mixed lymphocyte reaction and limiting dilution analysis, and specific anti-viral immunity with pentamer staining. The large-scale protocol was tested under current good manufacturing practice conditions in five donor-recipient pairs of human leukocyte antigen-matched volunteer donors.ResultsWe developed a closed-system methodology using cell differentiation bags for cell culture and the COBE2991 Cell Processor (CaridianBCT, Lakewood, CO, USA). We also validated an anti-CD71-biotin generated for ex vivo clinical use. In five large-scale runs, the depleted fraction demonstrated excellent viability (99.9%), minimal residual expression of CD3/CD25 and CD3/CD71 (<0.2%) and passed tests for Mycoplasma, endotoxin, bacterial and fungal sterility. In secondary mixed lymphocyte reaction assays, the median response to host after allodepletion was 0%, whereas responses to third-party peripheral blood mononuclear cells were preserved (median, 105%; range 37%–350%). Limiting dilution analysis assays also demonstrated a reduction in response to host (median, ?1.11 log) with preservation of third-party responses, and testing with human leukocyte antigen-restricted pentamers showed that populations of Epstein-Barr virus-specific and cytomegalovirus-specific CD8+ T cells were retained after depletion.ConclusionsWe optimized a protocol for the combined immunomagnetic depletion of alloreactive CD25/CD71 T cells under current good manufacturing practice conditions and tested the efficacy in five donor-recipient pairs.  相似文献   

4.
We have observed that in vivo interaction between melanoma and resting T cells promotes suppression of antigen-driven proliferative T cell expansion. We hypothesized that this suppression would affect tumor antigen-specific T cell populations more potently than tumor-unrelated T cell populations. A B16F10 cell line was stably transfected to express low levels of the lymphocytic choriomeningitis virus (LCMV) glycoprotein GP33 (B16GP33). Mice bearing B16F10 or B16GP33 tumors were infected with LCMV, and proliferative expansion of LCMV epitope-specific T cell populations was quantified. In vitro and in vivo assays confirmed low levels of antigenic GP33 expression by B16GP33 tumors. Suppressed expansion of GP33-specific T cells was equivalent between mice bearing B16F10 and B16GP33 tumors. These observations suggest that the ability of growing melanoma tumors to impair antigen-driven proliferative expansion of activated T cells is global and not antigen-specific, and provide further insight into the influence of cancer on activated T cell homeostasis.  相似文献   

5.
6.
B-1b cells play a key role in producing Abs against T cell-independent type 2 Ags. However, the factors regulating Ab production by this unique B cell subset are not well understood. In this study, a detailed analysis of the B cell response to 2,4,6-trinitrophenol (TNP)-Ficoll was performed using normal mice. TNP-Ficoll delivered i.p. or i.v. induced rapid Ag-specific B-1b cell activation, expansion, isotype switching, and plasmablast/plasma cell differentiation. Ag-specific B-1b cell numbers peaked at day 5 and then gradually declined in the spleen but remained elevated in the peritoneal cavity beyond 40 d postimmunization. In addition to expressing CD43, CD44, and CD86, Ag-activated B-1b cells transiently expressed programmed cell death 1 (PD-1), which functionally suppressed BCR-induced B-1b cell in vitro proliferation when additional costimulatory signals were lacking. Inhibiting PD-1:PD-1 ligand interactions during TNP-Ficoll immunization significantly enhanced Ag-specific B-1b cell expansion and the frequency of IgG isotype switching and plasmablast/plasma cell differentiation. Remarkably, PD-1 mAb blockade during the first week following immunization resulted in significantly increased numbers of both splenic and bone marrow Ag-specific IgG3-secreting cells, but not IgM-secreting cells, at both early (day 5) and late (week 6) time points. Moreover, Ag-specific serum IgG3 levels, as well as IgG2c, IgG2b, and IgA levels, remained significantly elevated in PD-1 mAb-treated mice relative to control Ab-treated mice for ≥6 wk postimmunization. Thus, PD-1:PD-1 ligand interactions occurring shortly after initial T cell-independent type 2 Ag encounter play a critical role in suppressing Ag-specific B-1b cell expansion and the development of long-term IgG-producing bone marrow and spleen cells.  相似文献   

7.
In normal mice, single-positive thymocytes proliferate before being exported into the peripheral T cell pool. We measured the in vivo proliferation rates of mature thymocytes in several TCR transgenic mice. Different monoclonal TCR transgenic single-positive thymocytes proliferated at different rates in a given MHC context. Conversely, mature thymocytes expressing a given TCR, generated in mice of different MHC haplotypes, also showed different rates of proliferation. In p59(fyn)-deficient mice, the proliferation rate of mature thymocytes was diminished. Thus, premigrant thymocyte expansion is TCR mediated and depends on TCR affinity for self peptide/MHC ligands. In addition, we show that mature thymocyte expansion is clonotypic, increases the daily thymic T cell output, and modifies the TCR repertoire of newly produced T cells.  相似文献   

8.
Traditional barriers to large-scale mammalian culture have now been addressed, with the standard stirred-tank reactor emerging as industry's technology of choice. The issues of adapting cells to suspension culture, shear sensitivity and oxygen supply have been largely resolved. But for many low-volume and specialty applications, such as the production of viral vaccines and gene therapies, reactor technology remains diversified, with reactor types ranging from roller bottles to stacked plates and hollow fibers.  相似文献   

9.
ICOS contributes to T cell expansion in CTLA-4 deficient mice   总被引:2,自引:0,他引:2  
Both CD28 and ICOS are important costimulatory molecules that promote Ag-specific cellular and humoral immune reactions. Whereas CD28 is generally thought to be the most important molecule in the initiation of a T cell response, ICOS is considered to act during the effector phase. We have investigated the contribution of ICOS to T cell responses in the absence of CTLA-4-mediated inhibition. Mice lacking CTLA-4, which show spontaneous CD28-mediated CD4(+) T cell activation, expansion and differentiation, were treated with antagonistic alphaICOS antibodies. Blocking the interaction between ICOS and its ligand B7RP-1 significantly reduced this aberrant T cell activation and caused a reduction in T cell numbers. In vitro analysis of CD4(+) T cells from treated mice revealed that ICOS blockade significantly reduced Th1 differentiation, while Th2 differentiation was only moderately inhibited. Further in vitro stimulation experiments demonstrated that ICOS is able to induce proliferation of murine CD4(+) and CD8(+) T cells but only in the presence of IL-2. These results indicate that ICOS is not only important for T cell effector function but also contributes to the expansion phase of a T cell response in the presence of CD28 signaling.  相似文献   

10.
Angiopoietin 2 (ANGPT2) is a proangiogenic cytokine whose expression is often upregulated by endothelial cells in tumors. Expression of its receptor, TIE2, defines a highly proangiogenic subpopulation of myeloid cells in circulation and tumors called TIE2-expressing monocytes/macrophages (TEMs). Genetic depletion of TEMs markedly reduces tumor angiogenesis in various tumor models, emphasizing their essential role in driving tumor progression. Previously, we demonstrated that ANGPT2 augments the expression of various proangiogenic genes, the potent immunosuppressive cytokine, IL-10, and a chemokine for regulatory T cells (Tregs), CCL17 by TEMs in vitro. We now show that TEMs also express higher levels of IL-10 than TIE2(-) macrophages in tumors and that ANGPT2-stimulated release of IL-10 by TEMs suppresses T cell proliferation, increases the ratio of CD4(+) T cells to CD8(+) T cells, and promotes the expansion of CD4(+)CD25(high)FOXP3(+) Tregs. Furthermore, syngeneic murine tumors expressing high levels of ANGPT2 contained not only high numbers of TEMs but also increased numbers of Tregs, whereas genetic depletion of tumor TEMs resulted in a marked reduction in the frequency of Tregs in tumors. Taken together, our data suggest that ANGPT2-stimulated TEMs represent a novel, potent immunosuppressive force in tumors.  相似文献   

11.
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC‐based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage‐specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:468–481, 2015  相似文献   

12.
To define the role of NF-kappa B in the development of T cell responses required for resistance to Toxoplasma gondii, mice in which T cells are transgenic for a degradation-resistant (Delta N) form of I kappa B alpha, an inhibitor of NF-kappa B, were challenged with T. gondii and their response to infection compared with control mice. I kappa B alpha(Delta N)-transgenic (Tg) mice succumbed to T. gondii infection between days 12 and 35, and death was associated with an increased parasite burden compared with wild-type (Wt) controls. Analysis of the responses of infected mice revealed that IL-12 responses were comparable between strains, but Tg mice had a marked reduction in systemic levels of IFN-gamma, the major mediator of resistance to T. gondii. In addition, the infection-induced increase in NK cell activity observed in Wt mice was absent from Tg mice and this correlated with NK cell expression of the transgene. Infection-induced activation of CD4(+) T cells was similar in Wt and Tg mice, but expansion of activated CD4(+)T cells was markedly reduced in the Tg mice. This difference in T cell numbers correlated with a reduced capacity of these cells to proliferate after stimulation and was associated with a major defect in the ability of CD4(+) T cells from infected mice to produce IFN-gamma. Together, these studies reveal that inhibition of NF-kappa B activity in T and NK cells results in defective effector cell expansion and production of IFN-gamma required for resistance to T. gondii.  相似文献   

13.
BACKGROUND: Clinical studies require protocols where a sufficient number of well-characterized highly immunogenic DC are produced according to good manufacturing practice (GMP) guidelines. METHODS: In the present study, using leukapheresis products from 10 cancer patients, we validated an elutriation technology for large-scale clinical grade production of monocyte-derived DC. RESULTS: The elutriation method gave a very high purity (mean+/-SD) (86+/-5.3%) and recovery (66+/-10.4%) of monocytes. Specifically for the two monocyte-rich fractions (3 and 4,) the recovery was 42+/-13% of viable cells that could be further differentiated into immature DC in hydrophobic culture bags using GM-CSF and IL-4. The immature DC exhibited<1% CD83+ expression and >98% phagocytic activity. Maturation with TNF-alpha or poly I:C resulted in DC with expression of CD80+, CD86+ and HLA-DR+ (>99%) and CD83+ (80+/-11.9%), as well as producing IL-12p70 and lacking phagocytic activity (<5%). This cell product can be cryopreserved with cell viability >85% and cell recovery >80% after thawing. DISCUSSION: The elutriation procedure, when optimized and if the monocyte content of the starting material exceeds 5%, does not require further selection or depletion using affinity approaches.  相似文献   

14.
This invited review discusses the latest advances stem cell biology, tissue engineering and the transition from bench to bedside. An overview is presented as to which the best cell source might be for cell therapy and tissue engineering applications, best biomaterials currently available and the challenges the field faces to translate basic research into therapies for a large number of human diseases.  相似文献   

15.
Peptides have unique properties that make them useful drug candidates for diverse indications, including allergy, infectious disease and cancer. Some peptides are intrinsically bioactive, while others can be used to induce precise immune responses by defining a minimal immunogenic region. The limitations of peptides, such as metabolic instability, short half-life and low immunogenicity, can be addressed by strategies such as multimerization or fusion to carriers, to improve their pharmacological properties. The remaining major drawback is the cost of production using conventional chemical synthesis, which is also difficult to scale-up. Over the last 15 years, plants have been shown to produce bioactive and immunogenic peptides economically and with the potential for large-scale synthesis. The production of peptides in plants is usually achieved by the genetic fusion of the corresponding nucleotide sequence to that of a carrier protein, followed by stable nuclear or plastid transformation or transient expression using bacterial or viral vectors. Chimeric plant viruses or virus-like particles can also be used to display peptide antigens, allowing the production of polyvalent vaccine candidates. Here we review progress in the field of plant-derived peptides over the last 5 years, addressing new challenges for diverse pathologies.  相似文献   

16.

Background

The use of CD19 chimeric antigen receptor (CAR) T cells to treat B-cell malignancies has proven beneficial. Several groups use serum to produce CD19 CAR T cells. Today, ready-to-use serum-free media that require no addition of serum are commercially available. Therefore, it becomes important to evaluate the production of CD19 CAR T cells with and without the addition of serum.

Methods

T cells from buffy coats were cultured in AIM-V and TexMACS (TM) supplemented with 5% human serum (A5% and TM5%, respectively), and in TM without serum. Cells were activated with OKT3 and expanded in interleukin (IL)-2. Viral transduction was performed in RetroNectin-coated plates using the spinoculation method. CD19 CAR T cells were tested for their viability, expansion, transduction efficacy, phenotype and cytotoxicity.

Results

CD19 CAR T cells expanded in A5% and TM5% showed significantly better viability and higher fold expansion than cells expanded in TM. TM promoted the expansion of CD8+ T cells and effector phenotype of CD19 CAR T cells. The transduction efficacy and the cytotoxic function were comparable between the different media. Higher CD107a+ cells were detected in TM and TM5%, whereas higher IL-2+ and IL-17+ cells were detected in A5%. CD19 CAR exhibited co-expression of inhibitory receptors such as TIM-3+LAG-3+ and/or TIM-3+PD-1+.

Conclusion

Our results indicate that serum supplementation promotes better CD19 CAR T-cell expansion and viability in vitro. CD19 CAR T cells produced in TM medium showed lower CD4/CD8 ratio, which warrants further evaluation in clinical settings. Overall, the choice of culture medium impacts CD19 CAR T-cell end product.  相似文献   

17.
Experimental observations suggesting adult stem cell plasticity and cross-lineage transdifferentiation have underpinned the investigation of cell therapy for cardiovascular disease. Many challenges still face the full realization of cardiovascular regenerative medicine. This brief review will highlight some of these, with emphasis on the choice of cell preparation, route of cell delivery and tracking of delivered cells.  相似文献   

18.
19.
Potential applicability of nonclonogenic measurements to clinical oncology   总被引:1,自引:0,他引:1  
A number of assays are currently under evaluation for their potential usefulness in the selection of new chemotherapeutic agents or as predictive indicators for use in the design of optimal cancer treatment. Assays fall under the general categories of tumor cell survival, treatment-induced cellular damage, and determination of inherent tumor factors which includes tumor cell kinetics, tumor oxygenation, and measurement of specific biochemical systems. While technical advances to optimize these assays are continuing, possible inter- and intra-tumor cell variability to anticancer treatment modalities may complicate the interpretation and subsequent use of these assays. Regardless of their ultimate usefulness as clinical predictors, these assays will be extremely valuable in better characterizing and understanding the cell biology and biochemistry of human malignancies.  相似文献   

20.
Existence of autocrine growth factors (aGFs) may influence the serum requirement for growth of hybridoma cells and thus significantly influence process economics. For the murine hybridoma cell line S3H5/2bA2, critical inoculum density (cID) and serum requirement for growth were inversely related for cultivation in both T flasks and spinner flasks. In spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 103 cell/ml was necessary in RPMI 1640 medium with 10% serum. In T flasks, where the local cell density is higher than in spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 1 cell/ml was also necessary in RPMI 1640 medium with 10% serum. Further, immobilized cells at high local cell density could grow under conditions where cells in T flasks at corresponding overall cell density could not grow. The cells at high inoculum density were less sensitive to shear induced by mechanical agitation than the cells at low inoculum density. Taken together these observations support the existence of secreted aGF(s) by the hybridoma cell line used. Since the specific MAb production rate was independent of cultivation method and inoculum density, the existence of autocrine growth factors would suggest that the use of immobilized cells should improve the economics of MAb production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号