首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (∼80%). Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative preconditioning.  相似文献   

2.
It has been accepted that bone marrow cells infiltrate the brain and play important roles in neuroinflammation. However, there is no good tool for the visualization of these cells in living animals. In this study, we generated mice that were transplanted with GFP- or luciferase-expressing bone marrow cells, and performed in vivo fluorescence imaging (FLI) and in vivo bioluminescence imaging (BLI) to visualize the infiltrated cells. Brain inflammation was induced by intrahippocampal injection of lipopolysaccharide (LPS). Immunohistochemical investigation demonstrated an increase in the infiltration of bone marrow cells into the hippocampus because of the LPS injection and differentiation of the infiltrated cells into microglia, but not into neurons or astrocytes. BLI, but not FLI, successfully detected an increase in signal intensity with the LPS injection, and the increase of BLI coincided with that of luciferase activity in hippocampus. BLI could quantitatively and continuously monitor bone marrow-derived cells in vivo.  相似文献   

3.
Abstract

We investigated the character and origin of the newly described “microglia-like” cell in the mammalian organ of Corti after aminoglycoside intoxication. We replicated the neomycin-induced ototoxicity model in cochleae of neonatal Sprague-Dawley rats and used their brains as microglia positive controls. The weak silver carbonate staining method of del Rio-Hortega was used to identify the microglia-like cell. The microglia-like cell was confirmed by transmission electron microscope (TEM). Microglia in the brain were stained while rat microglia-like cells in the cochlea were unstained by the weak silver carbonate staining method of del Rio-Hortega. Because the microglia-like cell was unstained by the method of del Rio-Hortega, it is unlikely that the newly found cell is related to microglia.  相似文献   

4.
Disease progression of amyotrophic lateral sclerosis (ALS) is partially mediated by the toxic microenvironment established by microglia. In the present study, we used SOD1G93A transgenic mice as an in vivo ALS model and replaced microglia expressing mutant SOD1 (mSOD1) with microglia expressing wild-type SOD1 (w/tSOD1) to modulate the toxic microenvironment. Stereotactic injection of Clodronate liposome, a selective toxin against the monocyte/macrophage system, into the fourth ventricle of the brains of 12-week-old asymptomatic ALS mice reduced the number of microglia effectively in the central nervous system. Subsequent bone marrow transplantation (BMT) with bone marrow cells (BMCs) expressing w/tSOD1 and GFP leads to replacement of the endogenous microglia of the ALS mice with microglia expressing w/tSOD1 and GFP. The expression of mSOD1 in the other neural cells was not influenced by the replacement procedures, and immunological side effects were not observed. The replacement of microglia significantly slowed disease progression and prolonged survival of the ALS mice compared with the ALS mice treated by stereotactic injection of PBS-liposome and BMT with BMCs expressing mSOD1 or w/tSOD1. These results suggest that replacement of microglia would improve the neural cell microenvironment, thereby slowing disease progression. The mechanisms and functional implications of this replacement require further elucidation.  相似文献   

5.
《Cytotherapy》2023,25(2):162-173
Background aimsBone marrow-derived hematopoietic stem cell transplantation/hematopoietic progenitor cell transplantation (HSCT/HPCT) is widely used and one of the most useful treatments in clinical practice. However, the homing rate of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) by routine cell transfusion is quite low, influencing hematopoietic reconstitution after HSCT/HPCT.MethodsThe authors developed a micro-living motor (MLM) strategy to increase the number of magnetically empowered bone marrow cells (ME-BMCs) homing to the bone marrow of recipient mice.ResultsIn the in vitro study, migration and retention of ME-BMCs were greatly improved in comparison with non-magnetized bone marrow cells, and the biological characteristics of ME-BMCs were well maintained. Differentially expressed gene analysis indicated that ME-BMCs might function through gene regulation. In the in vivo study, faster hematopoietic reconstitution was observed in ME-BMC mice, which demonstrated a better survival rate and milder symptoms of acute graft-versus-host disease after transplantation of allogeneic ME-BMCs.ConclusionsThis study demonstrated that ME-BMCs serving as MLMs facilitated the homing of HSCs/HPCs and eventually contributed to earlier hematopoietic reconstitution in recipients. These data might provide useful information for other kinds of cell therapies.  相似文献   

6.
Xu Z  Chen S  Li X  Luo G  Li L  Le W 《Neurochemical research》2006,31(10):1263-1269
The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of Amyotrophic lateral sclerosis (ALS). SOD1-G93A transgenic mice and wild-type mice were randomly divided into EGCG-treated groups (10 mg/kg, p.o) and vehicle-treated control groups. Rotarod measurement was performed to assess the motor function of mice starting at the age of 70 days. Nissl staining to examine the number of motor neurons and CD11b immunohistochemical staining to evaluate activation of microglia in the lumbar spinal cords were conducted at the age of 120 days. In addition, for further observation of regulation of cell signaling pathways by EGCG, we used immunohistochemical analysis for nuclear factor kappa B (NF-κB) and cleaved caspase-3 as well as western blot analysis to determine the expression of nitric oxide synthase (iNOS) and NF-κB in the spinal cord. This study demonstrated that oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-κB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-κB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS.  相似文献   

7.
BackgroundNIMA-related kinase-7 (NEK7) is a serine/threonine kinase that drives cell-cycle dynamics by modulating mitotic spindle formation and cytokinesis. It is also a crucial modulator of the pro-inflammatory effects of NOD-like receptor 3 (NLRP3) inflammasome. However, the role of NEK7 in microglia/macrophages post-spinal cord injury (SCI) is not well defined.MethodsIn this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse SCI model, NEK7 siRNAs were administered intraspinally. For in vitro analysis, BV-2 microglia cells with NEK7-siRNA were stimulated with 1 μg/ml lipopolysaccharide (LPS) and 2 mM Adenosine triphosphate (ATP).ResultsHere, we found that the mRNA and protein levels of NEK7 and NLRP3 inflammasomes were upregulated in spinal cord tissues of injured mice and BV-2 microglia cells exposed to Lipopolysaccharide (LPS) and Adenosine triphosphate (ATP). Further experiments established that NEK7 and NLRP3 interacted in BV-2 microglia cells, an effect that was eliminated following NEK7 ablation. Moreover, NEK7 ablation suppressed the activation of NLRP3 inflammasomes. Although NEK7 inhibition did not significantly improve motor function post-SCI in mice, it was found to attenuate local inflammatory response and inhibit the activation of NLRP3 inflammasome in microglia/macrophages of the injured spinal cord.ConclusionNEK7 amplifies NLRP3 inflammasome pro-inflammatory signaling in BV-2 microglia cells and mice models of SCI. Therefore, agents targeting the NEK7/NLRP3 signaling offers great promise in the treatment of inflammatory response post-SCI.  相似文献   

8.
BackgroundCytochrome c is well known to be released from mitochondria into the cytosol where it can initiate apoptosis. Recent studies indicate that cytochrome c is also released into the extracellular space by both healthy and damaged cells, where its function is not well understood. We hypothesized that extracellular cytochrome c could function as an intercellular signaling molecule of the brain, which is recognized by brain microglia. These cells belong to the mononuclear phagocyte system and can be activated by endogenous substances associated with diverse pathologies including trauma, ischemic damage and neurodegenerative diseases.MethodsThree different cell types were used to model microglia. Respiratory burst activity, nitric oxide production and cytotoxic secretions were measured following exposure of microglial cells to cytochrome c.ResultsWe showed that extracellular cytochrome c primed the respiratory burst response of differentiated HL-60 cells, enhanced nitric oxide secretion by BV-2 cells, and augmented cytotoxicity of differentiated THP-1 cells. We demonstrated that the effects of cytochrome c on microglia-like cells were at least partially mediated by the toll-like receptor 4 (TLR4) and c-Jun N-terminal kinases (JNK) signaling pathway.ConclusionsExtracellular cytochrome c can interact with microglia TLR4 and modulate select functions of these brain immune cells.General significanceOur data identifies extracellular cytochrome c as a potential intercellular signaling molecule, which may be recognized by microglia causing or enhancing their immune activation. The data obtained support targeting TLR4 and JNK signaling as potential treatment strategies for brain diseases characterized by excessive cellular death and activation of microglia.  相似文献   

9.
The role of thymus and bone marrow-derived cells in the in vitro response to the dinitrophenyl (DNP) determinant was studied using the millipore filter well technique for spleen organ cultures. Antibodies to DNP were assayed by the technique of inactivation of DNP-coupled T-4 bacteriophage. It was found that spleens of mice total-body irradiated at 750 R, treated with bone marrow and thymus cells after exposure and immunized against rabbit serum albumin (RSA) were able to produce antibodies to DNP when challenged in vitro with DNP-RSA. Such a response was not produced by spleen explants from x-irradiated mice treated with either thymus or bone marrow cells. Neither were antibodies to DNP produced by spleens of animals repopulated with thymus and bone marrow cells, but not immunized with the carrier. This carrier effect was manifested when the irradiated mice were treated with RSA and thymus cells 6–8 days before administration of the bone marrow cells. Yet, such an effect was not observed when the RSA and bone marrow cells were given 6–8 days before injection of the thymus cells. Thus, the thymus-derived cells appear to play the role of cells sensitive to the carrier (RSA), whereas the bone marrow seems to be involved in the production of antibodies.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of motor neurons, axon degeneration, and denervation of neuromuscular junctions (NMJ). Here we show that death receptor 6 (DR6) levels are elevated in spinal cords from post-mortem samples of human ALS and from SOD1G93A transgenic mice, and DR6 promotes motor neuron death through activation of the caspase 3 signaling pathway. Blocking DR6 with antagonist antibody 5D10 promotes motor neuron survival in vitro via activation of Akt phosphorylation and inhibition of the caspase 3 signaling pathway, after growth factor withdrawal, sodium arsenite treatment or co-culture with SOD1G93A astrocytes. Treatment of SOD1G93A mice at an asymptomatic stage starting on the age of 42 days with 5D10 protects NMJ from denervation, decreases gliosis, increases survival of motor neurons and CC1+ oligodendrocytes in spinal cord, decreases phosphorylated neurofilament heavy chain (pNfH) levels in serum, and promotes motor functional improvement assessed by increased grip strength. The combined data provide clear evidence for neuroprotective effects of 5D10. Blocking DR6 function represents a new approach for the treatment of neurodegenerative disorders involving motor neuron death and axon degeneration, such as ALS.  相似文献   

11.
Bone marrow-derived stem cells have the ability to migrate to sites of tissue damage and participate in tissue regeneration. The number of circulating stem cells has been shown to be a key parameter in this process. Therefore, stimulating the mobilization of bone marrow stem cells may accelerate tissue regeneration in various animal models of injury. In this study we investigated the effect of the bone marrow stem cells mobilizer StemEnhance (SE), a water-soluble extract of the cyanophyta Aphanizomenon flos-aquae (AFA), on hematopoietic recovery after myeloablation as well as recovery from cardiotoxin-induced injury of the anterior tibialis muscle in mice. Control and SE-treated female mice were irradiated, and then transplanted with GFP+ bone marrow stem cells and allowed to recover. Immediately after transplant, animals were gavaged daily with 300 mg/kg of SE in PBS or a PBS control. After hematopoietic recovery (23 days), mice were injected with cardiotoxin in the anterior tibialis muscle. Five weeks later, the anterior tibialis muscles were analyzed for incorporation of GFP+ bone marrow-derived cells using fluorescence imaging. SE significantly enhanced recovery from cardiotoxin-injury. However, StemEnhance did not affect the growth of the animal and did not affect hematopoietic recovery after myeloablation, when compared to control. This study suggests that inducing mobilization of stem cells from the bone marrow is a strategy for muscle regeneration.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. Despite the fact that many different therapeutic strategies have been applied to prevent disease progression, no cure or effective therapy is currently available for ALS. We found that l-arginine protects cultured motor neurons from excitotoxic injury. We also found that l-arginine supplementation both prior to and after the onset of motor neuron degeneration in mtSOD1 (G93A) transgenic ALS mice significantly slowed the progression of neuropathology in lumbar spinal cord, delayed onset of motor dysfunction, and prolonged life span. Moreover, l-arginine treatment was associated with preservation of arginase I activity and neuroprotective polyamines in spinal cord motor neurons. Our findings show that l-arginine has potent in vitro and in vivo neuroprotective properties and may be a candidate for therapeutic trials in ALS.  相似文献   

13.
《Cytotherapy》2014,16(4):454-459
Background aimsTo obtain a cell product competent for clinical use in terms of cell dose and biologic properties, bone marrow-derived mesenchymal stem cells (MSCs) must be expanded ex vivo.MethodsA retrospective analysis was performed of records of 76 autologous MSC products used in phase I or II clinical studies performed in a cohort of cardiovascular patients. In all cases, native MSCs present in patient bone marrow aspirates were separated and expanded ex vivo.ResultsThe cell products were classified in two groups (A and B), according to biologic properties and expansion time (ex vivo passages) to reach the protocol-established cell dose. In group A, the population of adherent cells obtained during the expansion period (2 ± 1 passages) was composed entirely of MSCs and met the requirements of cell number and biologic features as established in the respective clinical protocol. In group B, in addition to MSCs, we observed during expansion a high proportion of ancillary cells, characterized as osteoclast precursor cells. In this case, although the biologic properties of the resulting MSC product were not affected, the yield of MSCs was significantly lower. The expansion cycles had to be increased (3 ± 1 passages).ConclusionsThese results suggest that the presence of osteoclast precursor cells in bone marrow aspirates may impose a limit for the proper clinical use of ex vivo expanded autologous bone marrow-derived MSCs.  相似文献   

14.
15.
PurposeDragon's blood (DB), a Chinese traditional herb, was shown to have certain protective effects on radiation-induced bone marrow injury due to the presence of several phenolic compounds. The 50% ethanol extracts (DBE) were separated from DB by the methods of alcohol extracting-water precipitating. The protective effects of DBE on hematopoiesis were studied, particularly on megakaryocytes.Materials and methodsIn this study, we investigated the in vivo radioprotective effects of DBE on hematopoiesis and pathological changes using an irradiated-mouse model. Moreover, the protective effects and potential molecular mechanisms of DBE on megakaryocytopoiesis in vitro were explored in GM-CSF depletion-induced Mo7e cell model.ResultsDBE significantly promoted the recovery of peripheral blood cells in irradiated mice. Histology bone marrow confirmed the protective effect of DBE, as shown by an increased number of hematopoietic cells and a reduction of apoptosis. In a megakaryocytic apoptotic model, DBE (50 µg/mL) markedly alleviated GM-CSF withdrawal-induced apoptosis and cell-cycle arrest of Mo7e cells. DBE (50 µg/mL) also significantly decreased the ratio of Bax to Bcl-2 expression, inhibited the active caspase-3 expression. In addition, DBE could induce ERK1/2 phosphorylation in GM-CSF-depleted Mo7e cell, but not Akt.ConclusionsOur data demonstrated that DBE could effectively accelerate the recovery of peripheral blood cells, especially platelet. DBE attenuated cell apoptosis and cell cycle arrest through the decrease of Bax/Bcl-2 ratio and the reduction of active caspase-3 expression. The effect of DBE on Mo7e cells survival and proliferation is likely associated with the activation of ERK, but not Akt.  相似文献   

16.
BackgroundChronic activation of glial cells contributes to neurodegenerative diseases. Cytochrome c (CytC) is a soluble mitochondrial protein that can act as a damage-associated molecular pattern (DAMP) when released into the extracellular space from damaged cells. CytC causes immune activation of microglia in a toll-like receptor (TLR) 4-dependent manner. The effects of extracellular CytC on astrocytes are unknown. Astrocytes, which are the most abundant glial cell type in the brain, express TLR 4 and secrete inflammatory mediators; therefore, we hypothesized that extracellular CytC can interact with the TLR 4 of astrocytes inducing their release of inflammatory molecules and cytotoxins.MethodExperiments were conducted using primary human astrocytes, U118 MG human astrocytic cells, BV-2 murine microglia, and SH-SY5Y human neuronal cells.ResultsExtracellularly applied CytC increased the secretion of interleukin (IL)-1β, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-12 p70 by cultured primary human astrocytes. Anti-TLR 4 antibodies blocked the CytC-induced secretion of IL-1β and GM-CSF by astrocytes. Supernatants from CytC-activated astrocytes were toxic to human SH-SY5Y neuronal cells. We also demonstrated CytC release from damaged glial cells by measuring CytC in the supernatants of BV-2 microglia after their exposure to cytotoxic concentrations of staurosporine, amyloid-β peptides (Aβ42) and tumor necrosis factor-α.ConclusionCytC can be released into the extracellular space from damaged glial cells causing immune activation of astrocytes in a TLR 4-dependent manner.General significanceAstrocyte activation by CytC may contribute to neuroinflammation and neuronal death in neurodegenerative diseases. Astrocyte TLR 4 could be a potential therapeutic target in these diseases.  相似文献   

17.
Increasing evidence suggests that neurotoxicity of secreted superoxide dismutase 1 (SOD1) mutants is associated with amyotrophic lateral sclerosis (ALS). We show here that mutant SOD1 protein activates microglia via a myeloid differentiation factor 88 (MyD88)–dependent pathway. This inflammatory response is also associated with a marked recruitment of bone marrow–derived microglia (BMDM) in the central nervous system. We then generated chimeric SOD1G37R and SOD1G93A mice by transplantation of bone marrow (BM) cells from MyD88-deficient or green fluorescent protein (GFP)–expressing mice. SOD1G37R mice receiving MyD88−/− BM cells exhibit a significantly earlier disease onset and shorter lifespan compared with mice transplanted with control GFP cells. This compelling beneficial effect of MyD88-competent BMDM is a previously unrecognized natural innate immune mechanism of neuroprotection in a mouse model of late-onset motor neuron disease.  相似文献   

18.
MethodsMice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups.ResultsLevels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice.ConclusionThese results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.  相似文献   

19.
Background aimsMesenchymal stem cells/marrow stromal cells (MSC) represent a promising tool for stem cell-based clinical trials in amyotrophic lateral sclerosis (ALS). We present the results of long-term monitoring of 19 ALS patients enrolled in two phase I clinical trials of autologous MSC transplantationMethodsNineteen patients (11 male and eightfemale) with ALS were enrolled in two consecutive phase I clinical trials. The patients were followed-up for 6–9 months and then treated with autologous MSC isolated from bone marrow and implanted into the dorsal spinal cord with a surgical procedure. The patients were monitored regularly before and after transplantation with clinical, psychological and neuroradiologic assessments every 3 months, at the tertiary referral ALS center in Novara (Italy), until deathResultsFollow-up brain magnetic resonance imaging (MRI) revealed no structural changes (including tumor formation) relative to the baseline throughout the follow-up. There was no deterioration in the psychosocial status and all patients coped well. No clear clinical benefits were detected in these patients but the recruitment and selection of appropriate patients into larger trials will be needed to test the efficacy of the treatmentConclusionsThis study is the first to show the safety of MSC transplantation in the central nervous system during a follow-up of nearly 9 years, and is in support of applying MSC-based cellular clinical trials to neurodegenerative disorders.  相似文献   

20.
Background aimsTumor antigen-specific cytotoxic T lymphocytes (CTL) have been used in the treatment of human cancer, including leukemia. Several studies have established PR1 peptide, an HLA-A2.1-restricted peptide derived from proteinase 3 (P3), as a human leukemia-associated antigen. PR1-specific CTL elicited in vitro from healthy donors have been shown to lyse P3-expressing AML cells from patients. We investigated whether PR1-CTL can be adoptively transferred into NOD/SCID mice to eliminate human leukemia cells.MethodsPR1-CTL were generated in bulk culture from peripheral blood mononuclear cells (PBMC) stimulated with autologous dendritic cells. Human acute myeloid leukemia (AML) patient samples were injected and engrafted in murine bone marrow at 2 weeks post-transfer.ResultsFollowing adoptive transfer, bone marrow aspirate from mice that received AML alone had 72–88% blasts in a hypercellular marrow, whereas mice that received AML plus PR1-CTL co-infusion had normal hematopoietic elements and only 3–18% blasts in a hypocellular marrow. The PR1-CTL persisted in the bone marrow and liver and maintained a CD45RA? CD28+ effector phenotype.ConclusionsWe found that adoptive transfer of PR1-CTL generated in vitro is associated with reduced AML cells in NOD/SCID mice. PR1-CTL can migrate to the sites of disease and maintain their capacity to kill the AML cells. The surface phenotype of PR1-CTL was consistent with their trafficking pattern in both vascular and end-organ tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号