首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
PurposeAcute myeloid leukemia (AML) is a highly heterogeneous neoplastic disease with a poor prognosis that relapses even after its treatment with chimeric antigen receptor (CAR)-T cells targeting a single antigen. CD123 and CLL1 are expressed in most AML blasts and leukemia stem cells, and their low expression in normal hematopoietic stem cells makes them ideal targets for CAR-T. In this study, we tested the hypothesis that a new bicistronic CAR targeting CD123 and CLL1 can enhance antigenic coverage and prevent antigen escape and subsequent recurrence of AML.MethodsCD123 and CLL1 expressions were evaluated on AML cell lines and blasts. Then, in addition to concentrating on CD123 and CLL1, we introduced the marker/suicide gene RQR8 with a bicistronic CAR. Xenograft models of disseminated AML and in vitro coculture models were used to assess the anti-leukemia efficacy of CAR-T cells. The hematopoietic toxicity of CAR-T cells was evaluated in vitro by colony cell formation assays. It was demonstrated in vitro that the combination of rituximab and NK cells caused RQR8-mediated clearance of 123CL CAR-T cells.ResultsWe have successfully established bicistronic 123CL CAR-T cells that can target CD123 and CLL1. 123CL CAR-T cells effectively cleared AML cell lines and blasts. They also demonstrated appreciable anti-AML activity in animal transplant models. Moreover, 123CL CAR-T cells can be eliminated in an emergency by a natural safety switch and don't target hematopoietic stem cells.ConclusionsThe bicistronic CAR-T cells targeting CD123 and CLL1 may be a useful and secure method for treating AML.  相似文献   

2.
《Cytotherapy》2022,24(11):1087-1094
BackgroundNatural killer (NK) cell genome editing promises to enhance the innate and alloreactive anti-tumor potential of NK cell adoptive transfer. DNA transposons are versatile non-viral gene vectors now being adapted to primary NK cells, representing important tools for research and clinical product development.Aims and MethodsWe set out to generate donor-derived, primary chimeric antigen receptor (CAR)-NK cells by combining the TcBuster transposon system with Epstein–Barr virus–transformed lymphoblastoid feeder cell-mediated activation and expansion.ResultsThis approach allowed for clinically relevant NK-cell expansion capability and CAR expression, which was further enhanced by immunomagnetic selection based on binding to the CAR target protein.The resulting CAR-NK cells targeting the myeloid associated antigen CLL-1 efficiently targeted CLL-1–positive AML cell lines and primary AML populations, including a population enriched for leukemia stem cells. Subsequently, concurrent delivery of CRISPR/Cas9 cargo was applied to knockout the NK cell cytokine checkpoint cytokine-inducible SH2-containing protein (CIS, product of the CISH gene), resulting in enhanced cytotoxicity and an altered NK cell phenotype.ConclusionsThis report contributes a promising application of transposon engineering to donor-derived NK cells and emphasizes the importance of feeder mediated NK cell activation and expansion to current protocols.  相似文献   

3.
《Cytotherapy》2023,25(6):615-624
Background aimsMost current chimeric antigen receptor (CAR) T cells are generated by viral transduction, which induces persistent expression of CARs and may cause serious undesirable effects. Messenger RNA (mRNA)-based approaches in manufacturing CAR T cells are being developed to overcome these challenges. However, the most common method of delivering mRNA to T cells is electroporation, which can be toxic to cells.MethodsThe authors designed and engineered an exosome delivery platform using the bacteriophage MS2 system in combination with the highly expressed protein lysosome-associated membrane protein 2 isoform B on exosomes.ResultsThe authors’ delivery platform achieved specific loading and delivery of mRNA into target cells and achieved expression of specific proteins, and anti-CD3/CD28 single-chain variable fragments (scFvs) expressed outside the exosomal membrane effectively activated primary T cells in a similar way to commercial magnetic beads.ConclusionsThe delivery of CAR mRNA and anti-CD3/CD28 scFvs via designed exosomes can be used for ex vivo production of CAR T cells with cancer cell killing capacity. The authors’ results indicate the potential applications of the engineered exosome delivery platform for direct conversion of primary T cells to CAR T cells while providing a novel strategy for producing CAR T cells in vivo.  相似文献   

4.
《Cytotherapy》2014,16(8):1121-1131
Background aimsOutcomes for patients with glioblastoma remain poor despite aggressive multimodal therapy. Immunotherapy with genetically modified T cells expressing chimeric antigen receptors (CARs) targeting interleukin (IL)13Rα2, human epidermal growth factor receptor 2, epidermal growth factor variant III or erythropoietin-producing hepatocellular carcinoma A2 has shown promise for the treatment of glioma in preclinical models. On the basis of IL13Rα2 immunotoxins that contain IL13 molecules with one or two amino acid substitutions (IL13 muteins) to confer specificity to IL13Rα2, investigators have constructed CARS with IL13 muteins as antigen-binding domains. Whereas the specificity of IL13 muteins in the context of immunotoxins is well characterized, limited information is available for CAR T cells.MethodsWe constructed four second-generation CARs with IL13 muteins with one or two amino acid substitutions, and evaluated the effector function of IL13-mutein CAR T cells in vitro and in vivo.ResultsT cells expressing all four CARs recognized IL13Rα1 or IL13Rα2 recombinant protein in contrast to control protein (IL4R) as judged by interferon-γ production. IL13 protein produced significantly more IL2, indicating that IL13 mutein–CAR T cells have a higher affinity to IL13Rα2 than to IL13Rα1. In cytotoxicity assays, CAR T cells killed IL13Rα1- and/or IL13Rα2-positive cells in contrast to IL13Rα1- and IL13Rα2-negative controls. Although we observed no significant differences between IL13 mutein–CAR T cells in vitro, only T cells expressing IL13 mutein–CARs with an E13K amino acid substitution had anti-tumor activity in vivo that resulted in a survival advantage of treated animals.ConclusionsOur study highlights that the specificity/avidity of ligands is context-dependent and that evaluating CAR T cells in preclinical animal model is critical to assess their potential benefit.  相似文献   

5.
Background aimsChimeric antigen receptor (CAR) T-cell therapy is a promising treatment strategy in solid tumors. In vivo cell tracking techniques can help us better understand the infiltration, persistence and therapeutic efficacy of CAR T cells. In this field, magnetic resonance imaging (MRI) can achieve high-resolution images of cells by using cellular imaging probes. MRI can also provide various biological information on solid tumors.MethodsThe authors adopted the amino alcohol derivatives of glucose-coated nanoparticles, ultra-small superparamagnetic particles of iron oxide (USPIOs), to label CAR T cells for non-invasive monitoring of kinetic infiltration and persistence in glioblastoma (GBM). The specific targeting CARs included anti-human epidermal growth factor receptor variant III and IL13 receptor subunit alpha 2 CARs.ResultsWhen using an appropriate concentration, USPIO labeling exerted no negative effects on the biological characteristics and killing efficiency of CAR T cells. Increasing hypointensity signals could be detected in GBM models by susceptibility-weighted imaging MRI ranging from 3 days to 14 days following the injection of USPIO-labeled CAR T cells. In addition, nanoparticles and CAR T cells were found on consecutive histopathological sections. Moreover, diffusion and perfusion MRI revealed significantly increased water diffusion and decreased vascular permeability on day 3 after treatment, which was simultaneously accompanied by a significant decrease in tumor cell proliferation and increase in intercellular tight junction on immunostaining sections.ConclusionThese results establish an effective imaging technique that can track CAR T cells in GBM models and validate their early therapeutic effects, which may guide the evaluation of CAR T-cell therapies in solid tumors.  相似文献   

6.
CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.  相似文献   

7.
《Cytotherapy》2023,25(1):46-58
Background aimsThe targeting of solid cancers with chimeric antigen receptor (CAR) T cells faces many technological hurdles, including selection of optimal target antigens. Promising pre-clinical and clinical data of CAR T-cell activity have emerged from targeting surface antigens such as GD2 and B7H3 in childhood cancer neuroblastoma. Anaplastic lymphoma kinase (ALK) is expressed in a majority of neuroblastomas at low antigen density but is largely absent from healthy tissues.MethodsTo explore an alternate target antigen for neuroblastoma CAR T-cell therapy, the authors generated and screened a single-chain variable fragment library targeting ALK extracellular domain to make a panel of new anti-ALK CAR T-cell constructs.ResultsA lead novel CAR T-cell construct was capable of specific cytotoxicity against neuroblastoma cells expressing low levels of ALK, but with only weak cytokine and proliferative T-cell responses. To explore strategies for amplifying ALK CAR T cells, the authors generated a co-CAR approach in which T cells received signal 1 from a first-generation ALK construct and signal 2 from anti-B7H3 or GD2 chimeric co-stimulatory receptors. The co-CAR approach successfully demonstrated the ability to avoid targeting single-antigen-positive targets as a strategy for mitigating on-target off-tumor toxicity.ConclusionsThese data provide further proof of concept for ALK as a neuroblastoma CAR T-cell target.  相似文献   

8.
T cells modified with chimeric antigen receptors (CARs) targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1) is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28) or CD137 (designated ROR1RCD137) and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC), which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL)-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString) and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.  相似文献   

9.
《Cytotherapy》2020,22(12):734-743
Background aimsChimeric antigen receptor (CAR) T cells have achieved favorable responses in patients with hematologic malignancies, but the outcome has been far from satisfactory in the treatment of tumors with high expression of immunosuppressive molecules. To overcome this limitation, we modified CAR T cells to secrete types of human soluble programmed cell death protein 1 (PD-1) called sPD-1 CAR T cells.MethodsTo compare the effector function between second (conventional second-generation CAR targeting CD19) and sPD-1 CAR T cells, we measured cytotoxicity, cytokine secretion and activation markers incubated with or without tumor cells expressing CD19 and/or programmed cell death ligand 1 (PD-L1). Furthermore, the anti-tumor efficacy of second and sPD-1 CAR T cells was determined using an NSG mouse model bearing NALM-6-PD-L1. Finally, the underlying mechanism was investigated by metabolic parameters and RNA sequencing analysis of different CAR T cells.ResultsCompared with second CAR T cells, sPD-1 CAR T cells enhanced killing efficiency toward CD19+PD-L1+ tumor cells in vitro. Furthermore, sPD-1 CAR T cells reduced the tumor burden and prolonged overall survival of the NSG (NOD-SCID-IL2rg) mice bearing NALM-6-PD-L1. To explore the effect of soluble PD-1 on CAR T cells, we found that sPD-1 CAR T cells exhibited higher levels of activation and ameliorative profiles of differentiation, exhaustion, glycolysis and apoptosis.ConclusionsWith constitutive soluble PD-1 secretion, sPD-1 CAR T cells have tended to eradicate tumors with a high expression of PD-L1 more effectively than second CAR T cells. This may be due to soluble PD-1 enhancing apoptosis resistance, aerobic metabolism and a more “stem” differentiation of CAR T cells. Overall, our study presents a feasible strategy to increase the efficacy of CAR T cells.  相似文献   

10.

Background aims

Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions.

Methods

We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression.

Results

T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR.

Discussion

These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.  相似文献   

11.
《Cytotherapy》2021,23(8):715-723
Chimeric antigen receptor (CAR) T-cell therapy is a promising therapeutic strategy against lymphoma. However, post-treatment relapses due to antigen loss remain a challenge. Here the authors designed a novel bicistronic CAR construct and tested its functions in vitro and in vivo. The CAR construct consisted of individual anti-CD19 and anti-CD20 single-chain fragment variables equipped with ICOS-CD3ζ and 4-1BB-CD3ζ intracellular domains, respectively. The CD19 and CD20 bicistronic CAR T cells exhibited tumor lytic capacities equivalent to corresponding monospecific CAR T cells. Moreover, when stimulated with CD19 and CD20 simultaneously, the bicistronic CAR T cells showed prolonged persistence and enhanced cytokine generation compared with single stimulations. Interestingly, the authors found that the 4-1BB signal was predominant in the signaling profiles of ICOS and 4-1BB doubly activated CAR T cells. In vivo study using a CD19/CD20 double-positive tumor model revealed that the bicistronic CAR T cells were more efficient than monospecific CD19 CAR T cells in eradicating tumors and prolonging mouse survival. The authors’ novel bicistronic CD19/CD20 CAR T cells demonstrate improved anti-tumor efficacy in response to dual antigen stimulations. These data provide optimism that this novel bicistronic CAR construct can improve treatment outcomes in patients with relapsed/refractory B cell malignancy.  相似文献   

12.
《Cytotherapy》2021,23(12):1085-1096
Background aimsDespite the impressive efficacy of chimeric antigen receptor (CAR) T-cell therapy, adverse effects, including cytokine release syndrome and neurotoxicity, impede its therapeutic application, thus making the modulation of CAR T-cell activity a priority. The destabilizing domain mutated from Escherichia coli dihydrofolate reductase (DHFR) is inherently unstable and degraded by proteasomes unless it is stabilized by its chemical ligand trimethoprim (TMP), a Food and Drug Administration-approved drug. Here the authors reveal a strategy to modulate CAR T-cell activity at the protein level by employing DHFR and TMP as a chemical switch system.MethodsFirst, the system was demonstrated to work in human primary T cells. To introduce the system to CAR T cells, DHFR was genetically fused to the carboxyl terminal of a third-generation CAR molecule targeting CD19 (CD19-CAR), constructing the CD19-CAR-DHFR fusion.ResultsThe CD19-CAR-DHFR molecule level was shown to be modulated by TMP. Importantly, the incorporation of DHFR had no impact on the recognition specificity and normal function of the CAR molecule. Little adverse effect on cell proliferation and apoptosis was detected. It was proved that TMP could regulate cytokine secretion and the in vitro cytotoxicity of CD19-CAR-DHFR T cells. Furthermore, the in vivo anti-tumor efficacy was demonstrated to be controllable through the manipulation of TMP administration. The approach to control CD19-CAR also succeeded in 19-BBZ(71), another CD19-targeting CAR with a different structure.ConclusionsThe proposed approach based on DHFR and TMP provides a facile strategy to bring CAR T-cell therapy under conditional user control, and the strategy may have the potential to be transplantable.  相似文献   

13.
Targeted adoptive immunotherapy with engineered T cells is a promising treatment for refractory hematologic malignancies. However, many patients achieving early complete remissions ultimately relapse. Immunosuppressive ligands are expressed on tumor and supportive cells in the tumor microenvironment (TME). When activated, T cells express associated “checkpoint” receptors. Binding of co-inhibitory ligands and receptors may directly contribute to T-cell functional exhaustion. It is not known whether all T cells engineered to express chimeric antigen receptors (CARs) are subject to checkpoint-mediated regulation. It is also unknown whether distinct CAR signaling moieties modulate T-cell responsiveness to these inhibitory pathways. We have, therefore, directly compared functional co-inhibition in engineered T cells identically targeted to the tumor-associated antigen CD123, but distinct in their mode of T-cell activation: via the endogenous T-cell receptor (ENG), or downstream of CD28 or 41BB-containing CARs. In all cases, we have observed antigen-independent T-cell activation associated with upregulation of the co-inhibitory receptors programmed cell death protein 1 (PD-1, CD279), Tim-3 and Lag-3. Notably, CD28.CAR T cells were uniquely susceptible to PD-1/PD-L1 mediated checkpoint inhibition. Together, our data indicate that PD-1/PD-L1 checkpoint blocking agents may be considered clinically when CD28.CAR T cells do not perform optimally in human trials.  相似文献   

14.
《Cytotherapy》2021,23(9):810-819
Background aimsThe vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) signaling pathway plays an important role in angiogenesis and lymphangiogenesis, which are closely related to tumor cell growth, survival, tissue infiltration and metastasis. Blocking/interfering with the interaction between VEGF and VEGFR to inhibit angiogenesis/lymphangiogenesis has become an important means of tumor therapy.MethodsHere the authors designed a novel chimeric antigen receptor (CAR) lentiviral vector expressing the VEGF-C domain targeting both VEGFR-2 and VEGFR-3 (VEGFR-2/3 CAR) and then transduced CD3-positive T cells with VEGFR-2/3 CAR lentivirus.ResultsAfter co-culturing with target cells, VEGFR-2/3 CAR T cells showed potent cytotoxicity against both VEGFR-2- and VEGFR-3-positive breast cancer cells, with increased simultaneous secretion of interferon gamma, tumor necrosis factor alpha and interleukin-2 cytokines. Moreover, CAR T cells were able to destroy the tubular structures formed by human umbilical vein endothelial cells and significantly inhibit the growth, infiltration and metastasis of orthotopic mammary xenograft tumors in a female BALB/c nude mice model.ConclusionsThe authors’ results indicate that VEGFR-2/3 CAR T cells targeting both VEGFR-2 and VEGFR-3 have significant anti-tumor activity, which expands the application of conventional CAR T-cell therapy.  相似文献   

15.
《Cytotherapy》2021,23(9):787-792
Background aimsVesicular stomatitis virus G (VSV-G)-pseudotyped lentiviral vectors (LVs) are widely used to reliably generate genetically modified, clinical-grade T-cell products. However, the results of genetically modifying natural killer (NK) cells with VSV-G LVs have been variable. The authors explored whether inhibition of the IKK-related protein kinases TBK1 and IKKε, key signaling molecules of the endosomal TLR4 pathway, which is activated by VSV-G, would enable the reliable transduction of NK cells by VSV-G LVs.MethodsThe authors activated NK cells from peripheral blood mononuclear cells using standard procedures and transduced them with VSV-G LVs encoding a marker gene (yellow fluorescent protein [YFP]) or functional genes (chimeric antigen receptors [CARs], co-stimulatory molecules) in the presence of three TBK1/IKKε inhibitors (MRT67307, BX-795, amlexanox). NK cell transduction was evaluated by flow cytometry and/or western blot and the functionality of expressed CARs was evaluated in vitro.ResultsBlocking TBK1/IKKε during transduction of NK cells enabled their efficient transduction by VSV-G LVs as judged by YFPexpression of 40–50%, with half maximal effective concentrations of 1.1 µM (MRT67307), 5 µM (BX-795) and 24.8 µM (amlexanox). Focusing on MRT67307, the authors successfully generated NK cells expressing CD19-CARs or HER2-CARs with an inducible co-stimulatory molecule. CAR NK cells exhibited increased cytolytic activity and ability to produce cytokines in comparison to untreated controls, confirming CAR functionality.ConclusionsThe authors demonstrate that inhibition of TBK1/IKKε enables the reliable generation of genetically modified NK cells using VSV-G LVs. The authors’ protocol can be readily adapted to generate clinical-grade NK cells and thus has the potential to facilitate the clinical evaluation of genetically modified NK cell-based therapeutics in the future.  相似文献   

16.
Although remarkable results have been attained by adoptively transferring T cells expressing fully murine and/or humanized anti-CD19 chimeric antigen receptors (CARs) to treat B cell malignancies, evidence of human anti-mouse immune responses against CARs provides a rationale for the development of less immunogenic CARs. By developing a fully human CAR (huCAR), these human anti-mouse immune responses are likely eliminated. This, perhaps, not only increases the persistence of anti-CD19 CAR T cells—thereby reducing the risk of tumor relapse—but also facilitates administration of multiple, temporally separated doses of CAR T cells to the same recipient. To these ends, we have designed and constructed a second-generation fully human anti-CD19 CAR (or huCAR19) containing a fully human single-chain variable fragment (ScFv) fused with a CD8a hinge, a 4-1BB transmembrane domain and intracellular T cell signaling domains of 4-1BB and CD3z. T cells expressing this CAR specifically recognized and lysed CD19+ target cells produced cytokines and proliferated in vitro. Moreover, cell volume data revealed that our huCAR construct cannot induce antigen-independent tonic signaling in the absence of cognate antigen. Considering our results, our anti-CD19 huCAR may overcome issues of transgene immunogenicity that plague trials utilizing CARs containing mouse-derived ScFvs. These results suggest that this huCAR19 be safely and effectively applied for adaptive T cell immunotherapy in clinical practice.  相似文献   

17.
《Cytotherapy》2023,25(2):148-161
Background aimsCholangiocarcinoma (CCA) is a lethal bile-duct cancer that is difficult to treat by current standard procedures. This drawback has prompted us to develop adoptive T-cell therapy for CCA, which requires an appropriate target antigen for binding of chimeric antigen receptor (CAR) T cells. Mucin 1 (MUC1), an overexpressed protein in CCA cells, is a potential target antigen for the CAR T-cell development. However, MUC1 overexpression also is associated with the upregulation of programmed death-ligand 1 (PD-L1), an immune checkpoint protein that prohibits anti-tumor functions of T cells, probably causing poor overall survival of patients with CCA.MethodsTo overcome this problem, we developed anti-MUC1-CAR T cells containing PD-1-CD28 switch receptor (SR), namely αM.CAR/SR T cells, to target MUC1 and switch on the inhibitory signal of PD-1/PD-L1 interaction to activate CD28 signaling. Our lentiviral construct contains the sequences that encode anti-MUC1-single chain variable fragment, CD137 and CD3ζ, linked with P2A, PD-1 and CD28.ResultsInitially, the upregulations of MUC1 and PD-L1 proteins were confirmed in CCA cell lines. αM.CAR and SR were co-expressed in 53.53 ± 13.89% of transduced T cells, mainly CD8+ T cells (85.7 ± 0.75%, P<0.0001) with the effector memory phenotype (59.22 ± 16.31%, P < 0.01). αM.CAR/SR T cells produced high levels of intracellular tumor necrosis factor-α and interferon-γ in response to the activation by CCA cells expressing MUC1, including KKU-055 (27.18 ± 4.38% and 27.33 ± 5.55%, respectively, P < 0.05) and KKU-213A (47.37 ± 12.67% and 54.55 ± 8.66%, respectively, P < 0.01). Remarkably, the cytotoxic function of αM.CAR/SR T cells against KKU-213A cells expressing PD-L1 was significantly enhanced compared with the αM.CAR T cells (70.69 ± 14.38% versus 47.15 ± 8.413%, respectively; P = 0.0301), correlated with increased granzyme B production (60.6 ± 9.89% versus 43.2 ± 8.95%, respectively; P = 0.0402). Moreover, the significantly enhanced disruption of KKU-213A spheroids by αM.CAR/SR T cells (P = 0.0027), compared with αM.CAR T cells, was also observed.ConclusionTaken together, the cytotoxic function of αM.CAR/SR T cells was enhanced over the αM.CAR T cells, which are potential to be further tested for CCA treatment.  相似文献   

18.
《Cytotherapy》2022,24(8):767-773
Background aimsSelective immune pressure contributes to relapse due to target antigen downregulation in patients treated with anti-CD19 chimeric antigen receptor (CAR) T cells. Bispecific lentiviral anti-CD20/anti-CD19 (LV20.19) CAR T cells may prevent progression/relapse due to antigen escape. Highly polyfunctional T cells within a CAR T-cell product have been associated with response in single-antigen-targeted anti-CD19 CAR T cells.MethodsThe authors performed a single-cell proteomic analysis to assess polyfunctional cells in our LV20.19 CAR T-cell product. Analysis was limited to those treated at a fixed dose of 2.5 × 106 cells/kg (n = 16). Unused pre-infusion CAR T cells were thawed, sorted into CD4/CD8 subsets and stimulated with K562 cells transduced to express CD19 or CD20. Single-cell production of 32 individual analytes was measured and polyfunctionality and polyfunctional strength index (PSI) were calculated.ResultsFifteen patients had adequate leftover cells for analysis upon stimulation with CD19, and nine patients had adequate leftover cells for analysis upon stimulation with CD20. For LV20.19 CAR T cells, PSI was 866–1109 and polyfunctionality was 40–45%, which were higher than previously reported values for other CAR T-cell products.ConclusionsStimulation with either CD19 or CD20 antigens resulted in similar levels of analyte activation, suggesting that this product may have efficacy in CD19– patient populations.  相似文献   

19.
《Cytotherapy》2014,16(9):1257-1269
Background aimsTo develop a treatment option for Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ALL) resistant to tyrosine kinase inhibitors (TKIs), we evaluated the anti-leukemic activity of T cells non-virally engineered to express a CD19-specific chimeric antigen receptor (CAR).MethodsA CD19.CAR gene was delivered into mononuclear cells from 10 mL of blood of healthy donors through the use of piggyBac-transposons and the 4-D Nucleofector System. Nucleofected cells were stimulated with CD3/CD28 antibodies, magnetically selected for the CD19.CAR, and cultured in interleukin-15–containing serum-free medium with autologous feeder cells for 21 days. To evaluate their cytotoxic potency, we co-cultured CAR T cells with seven Ph+ALL cell lines including three TKI-resistant (T315I-mutated) lines at an effector-to-target ratio of 1:5 or lower without cytokines.ResultsWe obtained ∼1.3 × 108 CAR T cells (CD4+, 25.4%; CD8+, 71.3%), co-expressing CD45RA and CCR7 up to ∼80%. After 7-day co-culture, CAR T cells eradicated all tumor cells at the 1:5 and 1:10 ratios and substantially reduced tumor cell numbers at the 1:50 ratio. Kinetic analysis revealed up to 37-fold proliferation of CAR T cells during a 20-day culture period in the presence of tumor cells. On exposure to tumor cells, CAR T cells transiently and reproducibly upregulated the expression of transgene as well as tumor necrosis factor–related apoptosis-inducing ligand and interleukin-2.ConclusionsWe generated a clinically relevant number of CAR T cells from 10 mL of blood through the use of piggyBac-transposons, a 4D-Nulcleofector, and serum/xeno/tumor cell/virus-free culture system. CAR T cells exhibited marked cytotoxicity against Ph+ALL regardless of T315I mutation. PiggyBac-mediated CD19-specific T-cell therapy may provide an effective, inexpensive and safe option for drug-resistant Ph+ALL.  相似文献   

20.
《Cytotherapy》2020,22(10):552-562
Background aimsAnti-CD19 chimeric antigen receptor (CAR)-modified T cells have shown dramatic cytotoxicity against B-cell malignancies. Currently, autologous T cells are conventionally used to manufacture CAR T cells. Low quality or insufficient quantity of autologous T cells may lead to failure of CAR T preparations. Moreover, CAR T preparation usually takes 1–2 weeks, which is too long for patients with rapid disease progression to successfully infuse CAR T cells. Thus, the development of a ready-to-use CAR immunotherapy strategy is needed. NK-92, a natural killer (NK) cell line derived from an NK lymphoma patient, has been gradually applied as a CAR-modified effector cell. To avoid the potential development of secondary NK lymphoma in patients, large doses of radiation are used to treat NK-92 cells before clinical application, which ensures the safety but reduces the cytotoxicity of NK-92 cells. Therefore, it is crucial to explore a suitable radiation dose that ensures short life span and good cytotoxicity of CAR NK-92 cells.MethodsNK-92MI, a modified IL-2-independent NK-92 cell line, was used to establish an anti-CD19 CAR NK. The suitable radiation dose of CAR NK was then explored in vitro and validated in vivo, and the specific cytotoxicity of irradiated and unirradiated CAR NK against CD19+ malignant cells was assessed.ResultsCAR NK exhibited specific cytotoxicity against CD19+ malignant cells. Irradiation ensured a short life span of CAR NK in vitro and in vivo. Encouragingly, irradiated CAR NK displayed an anti-CD19+ malignancy capacity similar to that of unirradiated CAR NK.ConclusionsFive Gy is a suitable radiation dose to ensure the safety and effectiveness of CD19 CAR NK-92MI cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号